Answer: 0.8238
Step-by-step explanation:
Given : Scores on a certain intelligence test for children between ages 13 and 15 years are approximately normally distributed with
and
.
Let x denotes the scores on a certain intelligence test for children between ages 13 and 15 years.
Then, the proportion of children aged 13 to 15 years old have scores on this test above 92 will be :-
![P(x>92)=1-P(x\leq92)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{92-106}{15})\\\\=1-P(z\leq })\\\\=1-P(z\leq-0.93)=1-(1-P(z\leq0.93))\ \ [\because\ P(Z\leq -z)=1-P(Z\leq z)]\\\\=P(z\leq0.93)=0.8238\ \ [\text{By using z-value table.}]](https://tex.z-dn.net/?f=P%28x%3E92%29%3D1-P%28x%5Cleq92%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B92-106%7D%7B15%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq%20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq-0.93%29%3D1-%281-P%28z%5Cleq0.93%29%29%5C%20%5C%20%5B%5Cbecause%5C%20P%28Z%5Cleq%20-z%29%3D1-P%28Z%5Cleq%20z%29%5D%5C%5C%5C%5C%3DP%28z%5Cleq0.93%29%3D0.8238%5C%20%5C%20%5B%5Ctext%7BBy%20using%20z-value%20table.%7D%5D)
Hence, the proportion of children aged 13 to 15 years old have scores on this test above 92 = 0.8238
The first false statement in the proof as it stands is in Line 5, where it is claimed that a line of length 2.83 is congruent to a line of length 4.47. This mistake cannot be corrected by adding lines to the proof.
_____
The first erroneous tactical move is in Line 4, where the length of DE is computed, rather than the length of FD. This mistake can be corrected by adding lines to the proof.
A correct SAS proof would use segment FD in Line 4, so it could be argued that the first mistake is there.
Answer:
I think it is a 160o Angle
Step-by-step explanation:
9) 83 (9
-81
___
2
Mixed fraction formula: Quotient Reminder/Dividend
Q = 9 R=2 D=9
So, 83/9 in mixed fraction is 9 2/9
HOPE THIS HELPS!!!!
Answer:
see explanation
Step-by-step explanation:
These are the first 4 terms of a geometric sequence with n th term
= a₁ 
where a₁ is the first term and r the common ratio
r = 36 ÷ 24 = 54 ÷ 36 = 81 ÷ 54 = 1.5 and a₁ = 24, hence
= 24
← explicit formula