To get roots of 13 and -3 the simplified equation will have to look like this.
(X-13)(X+3)=0
So if we multiply this out with foil method we get this:
X^2 -10X -39
So the answer is A
Answer:
Volume of a cylinder = 653.12 cm³
Step-by-step explanation:
Volume of a cylinder = πr²h
Where,
Height, h = 13 cm
Radius, r = 4 cm
π = 3.14
Volume of a cylinder = πr²h
= 3.14 × (4cm)² × 13 cm
= 3.14 × 16 cm² × 13 cm
= 653.12 cm³
Volume of a cylinder = 653.12 cm³
A = event the person got the class they wanted
B = event the person is on the honor roll
P(A) = (number who got the class they wanted)/(number total)
P(A) = 379/500
P(A) = 0.758
There's a 75.8% chance someone will get the class they want
Let's see if being on the honor roll changes the probability we just found
So we want to compute P(A | B). If it is equal to P(A), then being on the honor roll does not change P(A).
---------------
A and B = someone got the class they want and they're on the honor roll
P(A and B) = 64/500
P(A and B) = 0.128
P(B) = 144/500
P(B) = 0.288
P(A | B) = P(A and B)/P(B)
P(A | B) = 0.128/0.288
P(A | B) = 0.44 approximately
This is what you have shown in your steps. This means if we know the person is on the honor roll, then they have a 44% chance of getting the class they want.
Those on the honor roll are at a disadvantage to getting their requested class. Perhaps the thinking is that the honor roll students can handle harder or less popular teachers.
Regardless of motivations, being on the honor roll changes the probability of getting the class you want. So Alex is correct in thinking the honor roll students have a disadvantage. Everything would be fair if P(A | B) = P(A) showing that events A and B are independent. That is not the case here so the events are linked somehow.
Answer:
The conclusion "T" logically follows from the premises given and the argument is valid
Step-by-step explanation:
Let us use notations to represent the steps
P: I take a bus
Q: I take the subway
R: I will be late for my appointment
S: I take a taxi
T: I will be broke
The given statement in symbolic form can be written as,
(P V Q) → R
S → (¬R ∧ T)
(¬Q ∧ ¬P) → S
¬R
___________________
∴ T
PROOF:
1. (¬Q ∧ ¬P) → S Premise
2. S → (¬R ∧ T) Premise
3. (¬Q ∧ ¬P) → (¬R ∧ T) (1), (2), Chain Rule
4. ¬(P ∨ Q) → (¬R ∧ T) (3), DeMorgan's law
5. (P ∨ Q) → R Premise
6. ¬R Premise
7. ¬(P ∨ Q) (5), (6), Modus Tollen's rule
8. ¬R ∧ T (4), (7), Modus Ponen's rule
9. T (8), Rule of Conjunction
Therefore the conclusion "T" logically follows from the given premises and the argument is valid.
Answer:
243 ways
Step-by-step explanation:
Fruits = 5
Bowls = 3
Remember that, There are three bowls for five fruits. So the possible outcomes are:
=>
ways