Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Answer:

Explanation:
First, let's find the voltage through the resistor using ohm's law:

AC power as function of time can be calculated as:
(1)
Where:

Because of the problem doesn't give us additional information, let's assume:

Evaluating the equation (1) in t=3600 (Because 1h equal to 3600s):

Maybe the picture helps. The blue block represents the cart with a mass of 3 kg. The person(black block) is pulling the cart to the right with a force F so that the acceleration a is 2 m/s². According to Newton's 2nd law: F = m*a.
Answer:
The kilogram (kg) is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015 ×10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ∆νCs.
Answer:
D. Drawing a conclusion about something