1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
3 years ago
9

According to Newton’s first law of motion what will an object in motion do when no external force acts on it?

Physics
1 answer:
PIT_PIT [208]3 years ago
4 0
The object will continue moving in a straight line at constant speed.
You might be interested in
1. The gravitational force acting on a falling body and its weight is constant. But the law of universal gravitation tells us th
vagabundo [1.1K]
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
3 0
3 years ago
In a horse cart system when would there be the smallest amount of acceleration
Assoli18 [71]

Answer:

well... when the horse stops/rests, or if it is blocked by a surface or anything of solid background.

Explanation:

If it is going up a hill or slope and it just starts to move that would also be considered the smallest amount of acceleration this can go for many things when it just starts to move. but I would go for when it rests amounting to your fitting of the question.

3 0
3 years ago
Forces that are equal in strength and opposite indirection are
Otrada [13]
Hey there! My name is Christy and I'm gladly to help you out!


The three main forces that stop moving objects are friction, gravity and wind resistance. Equal forces acting inopposite directions are called balanced forces. Balanced forcesacting on an object will not change the object's motion. When you add equal forces in opposite direction, the netforce is zero.

Hope this helped!


4 0
3 years ago
Read 2 more answers
You have a two-wheel trailer that you pull behind your ATV. Two children with a combined mass of 76.2 kg hop on board for a ride
marin [14]

a) The spring constant is 12,103 N/m

b) The mass of the trailer 2,678 kg

c) The frequency of oscillation is 0.478 Hz

d) The time taken for 10 oscillations is 20.9 s

Explanation:

a)

When the two children jumps on board of the trailer, the two springs compresses by a certain amount

\Delta x = 6.17 cm = 0.0617 m

Since the system is then in equilibrium, the restoring force of the two-spring system must be equal to the weight of the children, so we can write:

2mg = k'\Delta x (1)

where

m = 76.2 kg is the mass of each children

g=9.8 m/s^2 is the acceleration of gravity

k' is the equivalent spring constant of the 2-spring system

For two springs in parallel each with constant k,

k'=k+k=2k

Substituting into (1) and solving for k, we find:

2mg=2k\Delta x\\k=\frac{mg}{\Delta x}=\frac{(76.2)(9.8)}{0.0617}=12,103 N/m

b)

The period of the oscillating system is given by

T=2\pi \sqrt{\frac{m}{k'}}

where

And for the system in the problem, we know that

T = 2.09 s is the period of oscillation

m is the mass of the trailer

k'=2k=2(12,103)=24,206 N/m is the equivalent spring constant of the system

Solving the equation for m, we find the mass of the trailer:

m=(\frac{T}{2\pi})^2 k'=(\frac{2.09}{2\pi})^2 (24,206)=2,678 kg

c)

The frequency of oscillation of a spring-mass system is equal to the reciprocal of the period, therefore:

f=\frac{1}{T}

where

f is the frequency

T is the period

In  this problem, we have

T = 2.09 s is the period

Therefore, the frequency of oscillation is

f=\frac{1}{2.09}=0.478 Hz

d)

The period of the system is

T = 2.09 s

And this time is the time it takes for the trailer to complete one oscillation.

In this case, we want to find the time it takes for the trailer to complete 10 oscillations (bouncing up and down 10 times). Therefore, the time taken will be the period of oscillation multiplied by 10.

Therefore, the time needed for 10 oscillations is:

t=10T=10(2.09)=20.9 s

#LearnwithBrainly

7 0
3 years ago
Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum th
NeTakaya

Answer:

Explanation:

General equation of the electromagnetic wave:

E(x, t)= E_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]

where

\phi = Phase angle, 0

c = speed of the electromagnetic wave, 3 × 10⁸

\lambda = wavelength of electromagnetic wave, 698 × 10⁻⁹m

E₀ = 3.5V/m

Electric field equation

E(x, t)= 3.5sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6x-2.7\times 10^{15}t)]

Magnetic field Equation

B(x, t)= B_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]

Where B₀= E₀/c

B_0 = \frac{E_0}{c} = \frac{3.5}{3\times10^8}=1.2 \times 10^{-8}T

B(x, t)= 1.2\times10^{-8}sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6x-2.7\times 10^{15}t)]

6 0
3 years ago
Other questions:
  • an 1150kg elevator moving down speeds up at a rate of 3.5m/s. what is the tension in the supporting cables?
    13·1 answer
  • If two deuterium nuclei (charge +e, mass 3.34×10−27kg) get close enough together, the attraction of the strong nuclear force wil
    11·1 answer
  • List the planets that have MORE THAN 3 moons.
    8·1 answer
  • A current of 6.0 A runs through a circuit for 2.5 minutes.
    10·2 answers
  • If a 100-N net force acts on a 50-kg car, what will the acceleration of the car be?
    11·1 answer
  • List the parts of the electromagnetic spectrum from longest wavelength to shortest wavelength
    11·1 answer
  • Which of the following is an SI base unit for measuring length?
    14·2 answers
  • Pls answer quick I need to get the answer rn
    14·1 answer
  • An object moving in the xy-plane is subjected to the force f⃗ =(2xyı^ 3yȷ^)n, where x and y are in m
    13·1 answer
  • (i). A ball of mass 1.500 kg is attached to the end of a cord 1.50 m long. The ball moves in a horizontal circle. If the cord ca
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!