Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
Answer:
The uncertainty in the location that must be tolerated is 
Explanation:
From the uncertainty Principle,
Δ
Δ

The momentum P
= (mass of electron)(speed of electron)
= 
= 
If the uncertainty is reduced to a 0.0010%, then momentum
= 
Thus the uncertainty in the position would be:
Δ
Δ
<span>ATP is required for both light-dependent and light-independent reactions.
ATP stands for </span> adenosine triphosphate.
Hope this helps ;)
The answer would be B. This is because all planets in our galaxy orbit the sun.