Answer:
Magnitude of force P = 25715.1517 N
Explanation:
Given - The wires each have a diameter of 12 mm, length of 0.6 m, and are made from 304 stainless steel.
To find - Determine the magnitude of force P so that the rigid beam tilts 0.015∘.
Proof -
Given that,
Diameter = 12 mm = 0.012 m
Length = 0.6 m
= 0.015°
Youngs modulus of elasticity of 34 stainless steel is 193 GPa
Now,
By applying the conditions of equilibrium, we have
∑fₓ = 0, ∑
= 0, ∑M = 0
If ∑
= 0
⇒
×0.9 - P × 0.6 = 0
⇒
×3 - P × 2 = 0
⇒
= 
If ∑
= 0
⇒
×0.9 = P × 0.3
⇒
×3 = P
⇒
= 
Now,
Area, A =
= 1.3097 × 10⁻⁴ m²
We know that,
Change in Length ,
= 
Now,
= 9.1626 × 10⁻⁹ P
= 1.83253 × 10⁻⁸ P
Given that,
= 0.015°
⇒
= 2.618 × 10⁻⁴ rad
So,

⇒2.618 × 10⁻⁴ = ( 1.83253 × 10⁻⁸ P - 9.1626 × 10⁻⁹ P) / 0.9
⇒P = 25715.1517 N
∴ we get
Magnitude of force P = 25715.1517 N
Answer:
Δw =7.95 kg/1000m^3
q = 62362.3 kg/1000m^3
Explanation:
To solve this problem we first need to use the psycrometric chart to determine the enthalpy h1, specific volume vi and absolute humidity col by using the given temperature T1 = 32°C and the relative humidity Ф1 = 95%.
h_1 = 106.5 kJ/kg
v_1 = 0.91 m^3/kg
w_1 = 0.02905
We will also need the enthalpy h2 and the absolute humidity w_2 at the exit point. We will again use the pyscrometric chart and the given temperature T_2 = 24°C. From the problem we also know that the exit relative humidity is = 60%.
h2 = 52.6 kJ/kg
w_2 = 0.01119
We need to express the final results in units per 1000 m^3. To do that we will need the mass m of this volume of air V and to calculate that we will use the given pressure p = 1 atm = 101.3 kPa.
m = R_a*T_1/V.p
m = 1000*101.3/0.287*305K
m = 1157 kg
Because it is a closed system, the amount of water removed Δw can be calculated as:
Δw =w_1 - w_2
Δw =0.02905- 0.01119
Δw =0.00687 kg/kg* 1157kg/1000m^3
Δw =7.95 kg/1000m^3
From the energy balance equation we can calculate the specific heat q removed from the air.
q = h_1 - h_2
q = 106.5 kJ/kg - 52.6 kJ/kg
q = 53.9 kJ/kg * 1157kg/1000m^3
q = 62362.3 kg/1000m^3
Your muscles are supplying you with the energy to move through a biological process called <u>metabolism</u>.
<h3>What is metabolism?</h3>
Metabolism can be defined as a set of chemical and biological processes that are carried out by a living organism, in order to sustain life.
A good example of metabolism is the supply of energy by the muscles in the body of a living organism, which enables him or her to move from one point to another.
In conclusion, your muscles are able to supply you with the energy to move through a biological process called <u>metabolism</u>.
Read more on metabolism here: brainly.com/question/1490181
The answer & explanation for this question is given in the attachment below.