Answer:
Explanation:
a) for shifting reactions,
Kps = ph2 pco2/pcoph20
=[h2] [co2]/[co] [h2o]
h2 + co2 + h2O + co + c3H8 = 1
it implies that
H2 + 0.09 + H2O + 0.08 + 0.05 = 1
solving the system of equation yields
H2 = 0.5308,
H2O = 0.2942
B) according to Le chatelain's principle for a slightly exothermic reaction, an increase in temperature favors the reverse reaction producing less hydrogen. As a result, concentration of hydrogen in the reformation decreases with an increasing temperature.
c) to calculate the maximum hydrogen yield , both reaction must be complete
C3H8 + 3H2O ⇒ 3CO + 7H2( REFORMING)
CO + H2O ⇒ CO2 + H2 ( SHIFTING)
C3H8 + 6H2O ⇒ 3CO2 + 10 H2 ( OVER ALL)
SO,
Maximum hydrogen yield
= 10mol h2/3 molco2 + 10molh2
= 0.77
⇒ 77%
Answer:
A geological engineer
Explanation:
The field of geological engineering is concerned with geology, civil engineering and area of mining , geography and forestry.
Geological engineers apply their knowledge of earth science to solve human problems. Such as creating an equipment using science that can aid in solving the challenge in separating coal from dirt components in an environmental friendly manner.
Geological engineers investigate this that are connected to the earth such as mines, roads, quarries , pipelines, petroleum products, forests and building projects. They also perform surveys on effects of landslides and earthquakes.
Answer:
Attached below are the sketches
answer :
c) G(s) = 100 / ( s + 100 )
d) y'(t) + 100Y(s) = 100 X(s)
e) g(t) = e^-100t u(t)
Explanation:
a) Sketch the bode plot
The filter here is a low pass filter
b) Sketch the s-plane
attached below. pole ( s ) is at 100
c) write the transfer function of the filter
Transfer function ; G(s) = 100 / ( s + 100 )
d) write the differential equation
Y(s) / X(s) = 100 / s + 100
Y(s) [ s + 100 ] = 100 X(s)
= sY(s) + 100Y = 100 X(s)
∴ differential equation = y'(t) + 100Y(s) = 100 X(s)
e) write out the unforced transient response
g(t) = e^-100t u(t)
f) write out the frequency response
attached below
Answer:
2.77mpa
Explanation:
compressive strength = 20 MPa. We are to find the estimated flexure strength
We calculate the estimated flexural strength R as
R = 0.62√fc
Where fc is the compressive strength and it is in Mpa
When we substitute 20 for gc
Flexure strength is
0.62x√20
= 0.62x4.472
= 2.77Mpa
The estimated flexure strength is therefore 2.77Mpa