21.325 is the correct answer
Answer:
Minimum unit cost = 5,858
Step-by-step explanation:
Given the function : C(x)=x^2−520x+73458
To find the minimum unit cost :
Take the derivative of C(x) with respect to x
dC/dx = 2x - 520
Set = 0
2x - 520
2x = 520
x = 260
To minimize unit cost, 260 engines must be produced
Hence, minimum unit cost will be :
C(x)=x^2−520x+73458
Put x = 260
C(260) = 260^2−520(260) + 73458
= 5,858
Step-by-step explanation:
3 tan 2x - 4 tan 3x = tan² 3x * tan 2x
3 (tan 2x - tan 3x) = tan 3x + tan² 3x * tan 2x
= tan 3x (1 + tan 3x * tan 2x)
3 (tan 2x - tan 3x)/(1 + tan 3x * tan 2x) = tan 3x
3 * (- tan x) = tan 3x
-3tanx = (3 tan x - tan³ x) / (1 - 3 tan² x)
3 - tan² x = - 3 + 9 tan² x
tan x = + √3 /√5 or - √3/√5
The answer is 119.8245. 49% of $234.95 is 115.1255 (.49 • 234.95 = 115.1255). Subtract $115.1255 from $234.95 to get the answer to get 119.8245 (234.95 – 115.1255 = 119.8245).
Answer:
x=4
Step-by-step explanation:
if you do you'll get that is 64.