Answer: x= -1
Step-by-step explanation:
In mathematics when you have bases that are the same while multiplying you add the powers. In this case we do not have the same bases so we are going to make it look like 8 is 2. So we sort of simplify it. So we get 8 and put into like 2^4. We do not eliminate the power x that was already there though. So we will have 2^4x × 2^4-x. So like I said earlier we add the powers. Soo we will have
- 4x +4-x
- 4x-x=1
- 3x+4-4 =1-4
- 3x/3 = -3/3
- x= -1
<h2>Hope that helped!</h2>
Answer:7
Step-by-step explanation:
Answer:
The set of polynomial is Linearly Independent.
Step-by-step explanation:
Given - {f(x) =7 + x, g(x) = 7 +x^2, h(x)=7 - x + x^2} in P^2
To find - Test the set of polynomials for linear independence.
Definition used -
A set of n vectors of length n is linearly independent if the matrix with these vectors as columns has a non-zero determinant.
The set is dependent if the determinant is zero.
Solution -
Given that,
f(x) =7 + x,
g(x) = 7 +x^2,
h(x)=7 - x + x^2
Now,
We can also write them as
f(x) = 7 + 1.x + 0.x²
g(x) = 7 + 0.x + 1.x²
h(x) = 7 - 1.x + 1.x²
Now,
The coefficient matrix becomes
A = ![\left[\begin{array}{ccc}7&1&0\\7&0&1\\7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%261%260%5C%5C7%260%261%5C%5C7%26-1%261%5Cend%7Barray%7D%5Cright%5D)
Now,
Det(A) = 7(0 + 1) - 1(7 - 7) + 0
= 7(1) - 1(0)
= 7 - 0 = 7
⇒Det(A) = 7 ≠ 0
As the determinant is non- zero ,
So, The set of polynomial is Linearly Independent.