Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
A :-) it was given the name Newton (N). from this, the derived unit of energy (or work) is defined ,as the work produced when the unit of force causes a displacement equal to the unit of length of its point of application along its direction . It was given the name Joule (J).
Answer:
Pressure applied by the man= 285103.125
or 41.35 
Explanation:
Pressure is defined as the perpendicular force applied per unit area.
i.e. 
Now, 
where,
= mass of the body(man) = 93 kg
= acceleration due to gravity of Earth = 9.81 
covered is equal to the area of both stilts(a man generally stands on two feet)
therefore

and putting in the values, we get,

Now we need to convert to our required units:

(We can get the above result by individually converting kg to lb and meters to inches respectively)
Using the above relations we get,

Answer:
a) a = 34.375 m / s², b) v_f = 550 m / s
Explanation:
This problem is the launch of projectiles, they tell us to ignore the effect of the friction force.
a) Let's start with the final part of the movement, which is carried out from t= 16 s with constant speed
v_f =
we substitute the values
v_f =
The initial part of the movement is carried out with acceleration
v_f = v₀ + a t
x₁ = x₀ + v₀ t + ½ a t²
the rocket starts from rest v₀ = 0 with an initial height x₀ = 0
x₁ = ½ a t²
v_f = a t
we substitute the values
x₁ = 1/2 a 16²
x₁ = 128 a
v_f = 16 a
let's write our system of equations
v_f =
x₁ = 128 a
v_f = 16 a
we substitute in the first equation
16 a =
16 4 a = 6600 - 128 a
a (64 + 128) = 6600
a = 6600/192
a = 34.375 m / s²
b) let's find the time to reach this height
x = ½ to t²
t² = 2y / a
t² = 2 5100 / 34.375
t² = 296.72
t = 17.2 s
We can see that for this time the acceleration is zero, so the rocket is in the constant velocity part
v_f = 16 a
v_f = 16 34.375
v_f = 550 m / s