Answer:
10.2 Watt
Explanation:
= number of turns in flat coil = 160
= area = 0.20 m²
B₀= initial magnetic field = 0.40 T
= final magnetic field = - 0.40 T
Change in magnetic field is given as
ΔB = B - B₀ = - 0.40 - 0.40 = - 0.80 T
= time taken for the magnetic field to change = 2.0 s
Induced emf is given as


= 12.8 volts
= Resistance of the coil = 16 Ω
Power is given as


= 10.2 Watt
Since you are looking for the speed, you need to rearrange the formula which is f = speed / wavelength. That should give you speed = f (wavelength.) All you need to do next is to substitute the value to the following equation. speed = 250 Hz (6.0m) that should leave you with 1500 m/s which is very fast.
Answer:
a)
b)
Explanation:
a)
The width of the central bright in this diffraction pattern is given by:
when m is a natural number.
here:
- m is 1 (to find the central bright fringe)
- D is the distance from the slit to the screen
- a is the slit wide
- λ is the wavelength
So we have:
b)
Now, if we do m=2 we can find the distance to the second minima.

Now we need to subtract these distance, to get the width of the first bright fringe :
I hope it heps you!