Answer:

Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:

#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:

Specific volume,
:

The pressures at
is:

.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during 

b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :
Relative SV at
is

=
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:

Hence, the mean effective relative pressure is 674.95kPa
Answer:
0.00899 N
Explanation:
The magnitude of the electrostatic force between two charges is given by the equation:
where:
is the Coulomb's constant
are the charges
r is the distance between the two charges
And the force is:
- Repulsive if the two charges have same sign
- Attractive if the two charges have opposite sign
In this problem we have:
(charge of object 1)
(charge of object 2)
r = 1 m (separation between the objects)
So, the electric force is

Power = work / time = 8000J / 20s = 400W
Answer:
Baby are born due to the fertilization of Owen or egg present in vigina due to the fertilization from sperms
<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.