1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
13

What is a measure of the consistency and stability of test scores when readministered at different times?

Physics
1 answer:
tino4ka555 [31]3 years ago
5 0

Answer:

Reliability is typically shown as a reliability coefficient created in a calculation to determine the reliability, or consistency, of scores, such as a measure of the amount of consistency between two sets of scores from different administrations from the same group of students.

You might be interested in
A 23 kg body is moving through space in the positive direction of an x axis with a speed of 130 m/s when, due to an internal exp
babymother [125]

Answer:

a) Vx = 1088m/s

b) Vy = -162.93m/s

c) 5246745J

Explanation:

Mass of unbroken body = 23kg

Its velocity along +ve X-axis = 130m/s

Mass of first broken body, m1= 9.4kg

Its velocity along +ve X-axis = 130m/s

Nass of 2nd broken body, m2 = 6.1kg

Its velocity long-lived X - axis = -550m/s

Mass of 3rd broken body = ?

m3 = (23 - 9.4 - 6.1)kg

m3 = 7.5kg

Let velocity along the x-axis = Vx

Let the velocity along the x-axis = Vy

Applying law of conservation of momentum along x-axis

a) m1×0 + m2×(-550) + m3×(Vx) =M × 130

9.4 × 0 + 6.1× (-550) + 7.5(Vx) = 23 ×130

0 + (-5170) + 7.5Vx = 2990

2990 + 5170 = 7.5Vx

8160 = 7.5Vx

Vx = 8160/7.5

Vx = 1088m/s

b) Aplying conservation of momentum along the x-axis

(m1×130) + (m2 × 0) + (m3× Vy) = 0

(9.4 × 130) + (6.1 ×550) + 7.5Vy = 0

1222 + 0 + 7.5Vy = 0

1222 = -7.5Vy

Vy = 1222/(-7.5)

Vy = -262.93m/s

c) The energy released or change in KE is given by:

1/2[(m1v1^2) + (m2v2^2) +(m3Vx^2) ]= MV^2

Change in KE = 1/2[ 9.4× 130^2 + 6.1 × 550^2 + 7.5 × 1088^2 ] - 1/2(23 × 130^2)

Change in KE = 1/2[158860 + 1845250 + 8878080] - 1/2[388700]

Change in KE = 5441095 - 194350

Change in KE = 5246745J

4 0
3 years ago
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
3 years ago
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 2.9 m and moment of inertia 900 kg⋅m
Cloud [144]

Explanation:

It is given that,

Mass of person, m = 70 kg

Radius of merry go round, r = 2.9 m

The moment of inertia, I_1=900\ kg.m^2

Initial angular velocity of the platform, \omega=0.95\ rad/s

Part A,

Let \omega_2 is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

I_1\omega_1=I_2\omega_2

Here, I_2=I_1+mr^2

I_1\omega_1=(I_1+mr^2)\omega_2

900\times 0.95=(900+70\times (2.9)^2)\omega_2

Solving the above equation, we get the value as :

\omega_2=0.574\ rad/s

Part B,

The initial rotational kinetic energy is given by :

k_i=\dfrac{1}{2}I_1\omega_1^2

k_i=\dfrac{1}{2}\times 900\times (0.95)^2

k_i=406.12\ rad/s

The final rotational kinetic energy is given by :

k_f=\dfrac{1}{2}(I_1+mr^2)\omega_1^2

k_f=\dfrac{1}{2}\times (900+70\times (2.9)^2)(0.574)^2

k_f=245.24\ rad/s

Hence, this is the required solution.

5 0
3 years ago
A car accelerates from rest to a velocity of 5 meters/second in 4 seconds. What is its average acceleration over this period of
disa [49]

The average acceleration is

\bar a=\dfrac{5\,\frac{\mathrm m}{\mathrm s}-0\,\frac{\mathrm m}{\mathrm s}}{4\,\mathrm s}=1.25\,\dfrac{\mathrm m}{\mathrm s^2}

5 0
3 years ago
Read 2 more answers
The three stages of a train route took 1 hour ,2 hours ,and 4 hours . The first two stages were 80km and 200km of the train aver
luda_lava [24]

Answer:

the third stage was 480 km long

Explanation:

Stage 1:

Time = 1 hours

Speed = 80km

Stage 2:

Time =  2 hours

Speed = 200km

Stage 3:

Time =  4 hours

Let the Distance at the stage 3 be x

Average speed of the train route = 100 km/h

So

\frac{ \text{speed at stage 1} + \text{speed at stage 2} + \text{speed at stage 3}}{3} = 0

\frac{ \text{speed at stage 1} + \text{speed at stage 2} + \text{speed at stage 3}}{3} = 100

Lets find the speed at stage 1

Speed =  \frac{Distance }{Time}

Speed =  \frac{80}{1}

Speed 1= 80 km/hr

The speed at stage 2

Speed =  \frac{Distance }{Time}

Speed =  \frac{200}{2}

Speed 2  = 100 km/hr

The speed at stage 3

Speed =  \frac{Distance }{Time}

Speed =  \frac{x}{4}

Speed 3  = \frac{x}{4}

we kow that average is ,

\frac{ \text{speed 1} + \text{speed 2} + \text{speed 3}}{3} = 100

\frac{ 80 + 100+ \frac{x}{4} }{3} = 100

\frac{ 180 + \frac{x}{4} }{3} = 100

\frac{ \frac{720 +x}{4} }{3} = 100

\frac{720 +x}{4} \times \frac{1}{3} = 100

\frac{720 +x}{12} = 100

720 +x = 100 \times 12

720 +x = 1200

x = 1200- 720

x = 480

6 0
3 years ago
Other questions:
  • If you are walking to the elevator on a cruise ship , what are you probably using your frame of reference
    14·1 answer
  • A system is said to be closed if _____ the system.
    11·1 answer
  • Another droplet of the same mass falls 8.4 cm from rest in 0.250 s, again moving through a vacuum. Find the charge carried by th
    7·1 answer
  • What examples can you find in your home that are examples of kinetic and potential energy?
    11·1 answer
  • A comet has a period of 324 years; in other words, it orbits the Sun in 324 years. Most likely, this comet came from...(Hint: 32
    12·1 answer
  • What are the two <br>factors in which weight of object depends?​
    9·2 answers
  • The unit of kinetic energy is the _______. The unit of kinetic energy is the _______. hertz meter watt joule radian
    12·1 answer
  • A plant was placed in the corner of a room away from a window. What might you observe about the plant after five days?
    7·1 answer
  • Student 1 and student 2 talk about the speed of the truck
    7·1 answer
  • nolan ryan has the record for having the speediest fastball in baseball. he could pitch one at 148 i/sec. what is that speed in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!