a yoyo in someones hand is an example of potential energy
Answer:
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Explanation:
As we know that
According to Wien's law wavelength is inverse proportional to the temperature .
λ.T = Constant.
λ.∝ 1 /T
As we know that star radiates wavelength and this wavelength is inverse proportional to the temperature of the star.
The temperature of cool star is cooler than the temperature of hot star that is cool star looks red and hot star looks blue.Cool star have low energy and hot star have high energy.
So option B is correct.
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
The frequency of a wave is the reciprocal of its period.
A period of 0.008 sec means a frequency of
1 / 0.008 sec = 125 per sec . (125 Hz)
Answer:
The length of her shadow is changing at the rate -2 m/s
Explanation:
Let the height oh the street light, h = 22 ft
Let the height of the woman, w = 5.5 ft
Horizontal distance to the street light = l
length of shadow = x
h/w = (l + x)/x
22/5.5 = (l + x)/x
4x = l + x
3x = l
x = 1/3 l
taking the derivative with respect to t of both sides
dx/dt = 1/3 dl/dt
dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)
dx/dt = 1/3 * (-6)
dx/dt = -2 m/s
Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,

or

substituting the values in the equation we get,

or

or
X = 26.47°
similarly,

or

or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.