Answer:
A. 50 m/s
Explanation:
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 4 s
Find: v
v = at + v₀
v = (10 m/s²) (4 s) + 0 m/s
v = 40 m/s
In the x direction, the velocity is constant at 30 m/s.
The overall speed is:
v² = (30 m/s)² + (40 m/s)²
v = 50 m/s
Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
Answer:
D) momentum of cannon + momentum of projectile= 0
Explanation:
The law of conservation of momentum states that the total momentum of an isolated system is constant.
In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

Answer: 0.04139m
Explanation:
First, we need to calculate the weight of the man which will be:
Weight = mass × acceleration due to gravity
Weight = mg
Weight = 92.5 × 9.8
Weight = 906.5N
Then, we calculate the force which will be:
F = kx
mg = kx
x = mg/k
x = 906.5/21900
x = 0.04139m.
The spring stretched for 0.04139m.
Answer:
B. x - t graph
Explanation:
A position-time (x-t) graph is a graph of the position of an object against (versus) time.
Generally, the slope of the line of a position-time (x-t) graph is typically used to determine or calculate the velocity of an object.
An instantaneous velocity can be defined as the rate of change in position of an object in motion for a short-specified interval of time. Thus, an instantaneous velocity is a quantity that can be found by measuring the slope of a line that is tangent to a point on the graph.
Hence, the x - t graph also referred to as the position-time graph is used for determining the instantaneous velocity from the slope.
<u>For example;</u>
Given that the equation of motion is S(t) = 4t² + 2t + 10. Find the instantaneous velocity at t = 5 seconds.
Solution.
Differentiating the equation, we have;
Substituting the value of "t" into the equation, we have;
S(5) = 42 m/s.