The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
Answer: Line graph should be used to show how one variable changes over time not to show multiple categories or variables are at one specific point in time.
Explanation:
In maths, statistics, and related fields, graphs are used to visually display variables and their values. In the case of line graphs, these are mainly used to display evolution or change of a variable over time. For example, a line graph can show how the number of divorces changed from 1920 to 2010.
In this context, the number of different animals in the park cannot be represented through a line graph because this situation does not imply a variable changing over time. Moreover, this situation includes multiple variables or categories of animals and the data shows only one specific point in time, which can be better represented through a bar graph.
Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges and separated by a distance d, the magnitude of the electrostatic force F between them is:
where is Coulomb's constant.
Taking the values:
and knowing the value of the Coulomb's constant:
Taking all this in consideration:
Answer:
The air in the soccer ball in cold weather will decrease slightly in size and it becomes flat. The air in the soccer ball in hot weather will seem flat because the low preasure leads to lower bounce in the ball.
The metal door frame in cold weather contracts and the wood contracts more in the winter. The metal door frame in hot weather thermal blowing can occur on the outer surface of the metal door frame. Hopefully that is what you were looking for have a good day.