Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A
Answer:

Explanation:
Power is related to energy by the following relationship:

where
P is the power used
E is the energy used
t is the time elapsed
In this problem, we know that
- the power of the fan is P = 120 W
- the fan has been running for one hour, which corresponds to a time of

So we can re-arrange the previous equation to find E, the energy (in the form of thermal energy) released by the fan:

Answer:
inertia of motion
Explanation:
it's because when a passenger is jumping from a bus his/her body is in motion after falling in a road he/she remains or tends to remain in the state of motion that is the reason
Answer:3.4 seconds
Explanation:
Initial velocity(u)=0
acceleration=34.5m/s^2
Height(h)=200m
Time =t
h=u x t - (gxt^2)/2
200=0xt+(34.5xt^2)/2
200=34.5t^2/2
Cross multiply
200x2=34.5t^2
400=34.5t^2
Divide both sides by 34.5
400/34.5=34.5t^2/34.5
11.59=t^2
t^2=11.59
Take them square root of both sides
t=√(11.59)
t=3.4 seconds