1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
14

The cornea behaves as a thin lens of focal lengthapproximately 1.80 {\rm cm}, although this varies a bit. The material of whichi

t is made has an index of refraction of 1.38, and its front surface is convex,with a radius of curvature of 5.00 {\rm mm}.(Note: The results obtained here are not strictlyaccurate, because, on one side, the cornea has a fluid with arefractive index different from that of air.)a) If this focal length is in air, what is the radius ofcurvature of the back side of the cornea? (in mm)b) The closest distance at which a typical person can focus onan object (called the near point) is about 25.0 {\rm cm}, although this varies considerably with age. Wherewould the cornea focus the image of an 10.0 {\rm mm}-tall object at the near point? (in mm)c) What is the height of the image in part B? (mm)d) Is this image real or virtual? Is it erect orinverted?
Physics
1 answer:
Keith_Richards [23]3 years ago
5 0

Answer:

Explanation:

  a )

from lens makers formula

\frac{1}{f} =(\mu-1)(\frac{1}{r_1} -\frac{1}{r_2})

f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face

putting the values

\frac{1}{1.8} =(1.38-1)(\frac{1}{.5} -\frac{1}{r_2})

1.462 = 2 - 1 / r₂

1 / r₂ = .538

r₂ = 1.86 cm .

= 18.6 mm .

b )

object distance u = 25 cm

focal length of convex lens  f  = 1.8 cm

image distance  v   = ?

lens formula

\frac{1}{v} - \frac{1}{u} = \frac{1}{f}

\frac{1}{v} - \frac{1}{-25} = \frac{1}{1.8}

\frac{1}{v} = \frac{1}{1.8} -\frac{1}{25}

.5555 - .04

= .515

v = 1.94 cm

c )

magnification = v / u

= 1.94 / 25

= .0776

size of image = .0776 x size of object

= .0776 x 10 mm

= .776 mm

It will be a real image and it will be inverted.

 

You might be interested in
Describe real life examples of the results of scientific investigation
kupik [55]
-- We know that the Earth is a spinning globe.

-- We know what the weather will be like in your town tomorrow.

-- We know the distance from us to the Sun and the Moon.

-- Best of all:  Your doctor can give you shots so you won't get flu,
chicken pox, measles, mumps, whooping cough, tetanus, diphtheria,
smallpox, or polio. 

Almost EVERY kid used to get chicken pox, measles, and mumps
when I was in school, and thousands of kids used to die every year
from diphtheria and polio.  And now, you probably never heard of
most of these.
7 0
3 years ago
Blake is setting up his tent at a renaissance fair. If the tent is 8 feet tall and the tether can be staked no more than 2 feet
Mariana [72]
The stake, height and tether length of the tent form a right angle triangle where the tether length is the hypotenuse.
Applying Pythagoras theorem:
length² = height² + (stake distance)²
length = √(8² + 2²)
length = 8.5 feet
3 0
3 years ago
What is the difference between pulse and periodic waves, and what is the difference between transverse and longitudinal waves?
stiv31 [10]

<u>Difference between pulse and periodic waves:</u>

A pulse wave is a sudden disturbance in which only one wave or a few waves are generated, such as in the example of the pebble. Thunder and explosions also create pulse waves. A periodic wave repeats the same oscillation for several cycles, such as in the case of the wave pool, and is associated with simple harmonic motion. Each particle in the medium experiences simple harmonic motion in periodic waves by moving back and forth periodically through the same positions.

<u>Difference between longitudinal and transverse waves:</u>

A transverse wave propagates when the disturbance is perpendicular to the propagation direction. An example of a transverse wave is where a woman moves a toy spring up and down, generating waves that propagate away from herself in the horizontal direction while disturbing the toy spring in the vertical direction.

In a longitudinal wave, the disturbance is parallel to the propagation direction. Example of longitudinal wave is where the woman now makes a disturbance in the horizontal direction—which is the same direction as the wave propagation—by stretching and then compressing the toy spring.

7 0
4 years ago
A 58.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 140 m/s from the top of a cliff
strojnjashka [21]

(a) 6.43\cdot 10^5 J

The total mechanical energy of the projectile at the beginning is the sum of the initial kinetic energy (K) and potential energy (U):

E=K+U

The initial kinetic energy is:

K=\frac{1}{2}mv^2

where m = 58.0 kg is the mass of the projectile and v=140 m/s is the initial speed. Substituting,

K=\frac{1}{2}(58 kg)(140 m/s)^2=5.68\cdot 10^5 J

The initial potential energy is given by

U=mgh

where g=9.8 m/s^2 is the gravitational acceleration and h=132 m is the height of the cliff. Substituting,

U=(58.0 kg)(9.8 m/s^2)(132 m)=7.5\cdot 10^4 J

So, the initial mechanical energy is

E=K+U=5.68\cdot 10^5 J+7.5\cdot 10^4 J=6.43\cdot 10^5 J

(b) -1.67 \cdot 10^5 J

We need to calculate the total mechanical energy of the projectile when it reaches its maximum height of y=336 m, where it is travelling at a speed of v=99.2 m/s.

The kinetic energy is

K=\frac{1}{2}(58 kg)(99.2 m/s)^2=2.85\cdot 10^5 J

while the potential energy is

U=(58.0 kg)(9.8 m/s^2)(336 m)=1.91\cdot 10^5 J

So, the mechanical energy is

E=K+U=2.85\cdot 10^5 J+1.91 \cdot 10^5 J=4.76\cdot 10^5 J

And the work done by friction is equal to the difference between the initial mechanical energy of the projectile, and the new mechanical energy:

W=E_f-E_i=4.76\cdot 10^5 J-6.43\cdot 10^5 J=-1.67 \cdot 10^5 J

And the work is negative because air friction is opposite to the direction of motion of the projectile.

(c) 88.1 m/s

The work done by air friction when the projectile goes down is one and a half times (which means 1.5 times) the work done when it is going up, so:

W=(1.5)(-1.67\cdot 10^5 J)=-2.51\cdot 10^5 J

When the projectile hits the ground, its potential energy is zero, because the heigth is zero: h=0, U=0. So, the projectile has only kinetic energy:

E = K

The final mechanical energy of the projectile will be the mechanical energy at the point of maximum height plus the work done by friction:

E_f = E_h + W=4.76\cdot 10^5 J +(-2.51\cdot 10^5 J)=2.25\cdot 10^5 J

And this is only kinetic energy:

E=K=\frac{1}{2}mv^2

So, we can solve to find the final speed:

v=\sqrt{\frac{2E}{m}}=\sqrt{\frac{2(2.25\cdot 10^5 J)}{58 kg}}=88.1 m/s

4 0
3 years ago
Would the solar panel work under a fluorescent or halogen light? explain your response being sure to relate your observations to
lina2011 [118]

A solar panel are most efficient under natural sunlight, however, a solar panel can work using artificial light simply because a solar panel collects photons which collide with silicon atoms transferring their energy which cause them to lose electrons.

3 0
3 years ago
Other questions:
  • The media's role is primarily entertainment so it has a little fact on our wellness
    11·1 answer
  • The findings of Henri Becquerel and the Curies helped to discredit what notion held for a very long time?
    10·1 answer
  • A student sits atop a platform a distance h above the ground. He throws a pingpong ball horizontally with a speed v. However, a
    15·1 answer
  • Choose the letter of the answer that best completes
    5·2 answers
  • “How fast do X rays travel in a vacuum?
    8·1 answer
  • A train started from rest and moved with constant acceleration. At one time it was traveling 30 m/s, and 160 m farther on it was
    14·1 answer
  • A long solenoid has 103 turns/cm and carries current i. An electron moves within the solenoid in a circle of radius 2.60 cm perp
    14·1 answer
  • On level ground a shell is fired with an initial velocity of 46.0 m/s at 66.0 ∘ above the horizontal and feels no appreciable ai
    9·1 answer
  • If car A is at 47 km/h and car B is at 62 km/h in the opposite direction,
    15·1 answer
  • A woman stands on a bathroom scale in a motionless elevator. When the elevator begins to move, the scale briefly reads only 0.64
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!