Hello! I can help you with this!
4. For this problem, we have to write and solve a proportion. We would set this proportion up as 12/15 = 8/x. This is because we're looking for the length of the shadow and we know the height of the items, so we line them up horizontally and x goes with 8, because we're looking for the shadow length. Let's cross multiply the values. 15 * 8 = 120. 12 * x = 12. You get 120 = 12x. Now, we must divide each side by 12 to isolate the "x". 120/12 is 10. x = 10. There. The cardboard box casts a shadow that is 10 ft long.
5. For this question, you do the same thing. This time, you're finding the height of the tower, so you would do 1.2/0.6 = x/7. Cross multiply the values in order to get 8.4 = 0.6x. Now, divide each side by 0.6x to isolate the "x". 8.4/0.6 is 14. x = 14. There. The tower is 14 m tall.
If you need more help on proportions and using proportions in real life situations, feel free to search on the internet to find more information about how you solve them.
In our community, every person takes a certain role in a way that they contribute something for the development of the community. Certain interactive roles include trainings, team buildings, meetings, fund raising, and etc. Every individual has also gained their own statuses depending on what they have achieved and what they have contributed as well. Those individuals that are classified in the higher statuses are those who are experienced and trained to lead. These roles and statuses help our community become better as well as helping the youth to be great models and individuals in the future.
Wavelength- <span>distance between successive crests of a wave.
frequency- t</span><span>he rate at which something occurs or is repeated over time.
amplitude-</span><span> maximum extent of a vibration.</span>
Answer:
D. Because mass and energy are both conserved, the total amounts of mass and energy are the same before and after impact.
Explanation:
As we know that, the energy in motion is Kinetic Energy mathematically given as:

<u>Now, according to the law of conservation of energy:</u>

where:
mass of racquet and ball respectively and
are their respective initial velocities.
are the respective final velocities.
<u>Also the law of conservation of momentum is applicable in this case:</u>

In this case the velocity of the lighter mass will get increases in the final condition.