Slope-intercept form is y=mx+b, so we simply have to solve for y...
3y+5x=-15 subtract 5x from both sides
3y=-5x-15 divide both sides by 3
y=-5x/3-5 or more neatly in my opinion...
y=(-5x-15)/3
He earned $20 because 20% of $100 is $20
Answer:
k = -5
Step-by-step explanation:
y = -8x - 73 and x = -4
y = (-8) (-4) - 73 = - 41 : intersect at (-4 , - 41)
(-4 , - 41) must at y = 9x + k
-41 = 9*(-4) +k
k = -41 + 36 = -5
y = 9x - 5 x<-4
Using probability concepts, it is found that:
- The theoretical probability of spinning an odd number is equal to 3/5 = 0.6.
- The experimental probability of spinning an odd number is equal to 1/2 = 0.5.
- Therefore, the theoretical probability of spinning an odd number is greater than the experimental probability of spinning an odd number.
<h3>What is a probability?</h3>
A probability is given by the <u>number of desired outcomes divided by the number of total outcomes</u>.
A theoretical probability is calculated without considering experiments, and we have that 3 out of the 5 numbers(1,3,5) and are odd, hence the theoretical probability is given by:
pT = 3/5 = 0.6.
For an experimental probability, we consider the experiments. Of the 6 spins, 3 resulted in an odd number, hence the experimental probability is given by:
p = 3/6 = 1/2 = 0.5.
Therefore, the theoretical probability of spinning an odd number is greater than the experimental probability of spinning an odd number.
More can be learned about probabilities at brainly.com/question/14398287
#SPJ1
Answer:

Step-by-step explanation:
In order to solve this problem we must start by graphing the given function and finding the differential area we will use to set our integral up. (See attached picture).
The formula we will use for this problem is the following:

where:


a=0

so the volume becomes:

This can be simplified to:

and the integral can be rewritten like this:

which is a standard integral so we solve it to:
![V=9\pi[tan y]\limits^\frac{\pi}{3}_0](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20y%5D%5Climits%5E%5Cfrac%7B%5Cpi%7D%7B3%7D_0)
so we get:
![V=9\pi[tan \frac{\pi}{3} - tan 0]](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20-%20tan%200%5D)
which yields:
]