let's firstly convert the mixed fractions to improper fractions and then proceed.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\begin{array}{ccll} miles&hours\\ \cline{1-2} \frac{9}{2}&\frac{5}{4}\\[1em] x&1 \end{array}\implies \cfrac{~~ \frac{9}{2}~~}{x}=\cfrac{~~ \frac{5}{4}~~}{1}\implies \cfrac{~~ \frac{9}{2}~~}{\frac{x}{1}}=\cfrac{5}{4}\implies \cfrac{9}{2}\cdot \cfrac{1}{x}=\cfrac{5}{4} \\\\\\ \cfrac{9}{2x}=\cfrac{5}{4}\implies 36=10x\implies \cfrac{36}{10}=x\implies \cfrac{18}{5}=x\implies 3\frac{3}{5}=x](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccll%7D%20miles%26hours%5C%5C%20%5Ccline%7B1-2%7D%20%5Cfrac%7B9%7D%7B2%7D%26%5Cfrac%7B5%7D%7B4%7D%5C%5C%5B1em%5D%20x%261%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7Bx%7D%3D%5Ccfrac%7B~~%20%5Cfrac%7B5%7D%7B4%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B9%7D%7B2%7D~~%7D%7B%5Cfrac%7Bx%7D%7B1%7D%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%7D%3D%5Ccfrac%7B5%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2x%7D%3D%5Ccfrac%7B5%7D%7B4%7D%5Cimplies%2036%3D10x%5Cimplies%20%5Ccfrac%7B36%7D%7B10%7D%3Dx%5Cimplies%20%5Ccfrac%7B18%7D%7B5%7D%3Dx%5Cimplies%203%5Cfrac%7B3%7D%7B5%7D%3Dx)
Ths system of equations is
<span>8x+6y=48 ..............>y = 48/6 -8x/6
2x−3y=−6 ..............>y = 6/3 + 2x/3
If we use a graphic tool, we can easily check the solution,
which is
(x,y) = (3,4)
The ordered pair lies in Quadrant I</span>
ANSWER :
Surface area of larger cone : 24π units^2
Surface area of smaller cone : 6π units^2
The surface area of the smaller cone is 25% of that of the larger cone.
EXPLANATION :
From the given problem,
AB = 3 is the radius of the larger cone and the slanted height is BC = 5
DE = 1.5 is the radius of the smaller cone and the slanted height is EC = 2.5
Recall the surface area of the cone :

where r = radius and L = slanted height.
For the larger cone, r = 3 and L = 5

For the smaller cone, r = 1.5 and L = 2.5

Comparing the surface areas :
The area of the smaller cone compared to the larger cone is :
Answer:
D. 1000 gallons per hour
Step-by-step explanation:
5000 / 5 = 1000
The probability that he selected the special quarter is 87.5%.
<h3><u /></h3><h3><u>Probability</u></h3>
Given that Mandvil has one standard quarter and one special quarter with a Head on both sides, and he selects one of these two coins at random, and without looking at it first, he flips the coin three times, to determine, if he flips a Head three straight times, what is the probability that he selected the special quarter, the following calculation must be made:
- 1 - (standard quarter) = X
- 1 - (0.50^3) = X
- 1 - 0.125 = X
- 0.875 = X
- 0.875 x 100 = 87.5
Therefore, the probability that he selected the special quarter is 87.5%.
Learn more about probability in brainly.com/question/24217562