1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Archy [21]
2 years ago
10

How would you find the intercept for the equation y^2=2-3x-2x^2? I need the steps to understand

Mathematics
1 answer:
krek1111 [17]2 years ago
3 0

9514 1404 393

Answer:

  • x-intercepts: -2, +1/2
  • y-intercepts: ±√2

Step-by-step explanation:

You always find the intercepts by setting the known coordinate to its known value and solving for the value of the unknown coordinate.

An x-intercept is always found on the line y=0. Setting y=0 and solving for x, we find ...

  0 = 2 -3x -2x^2

  x^2 +3/2x -1 = 0 . . . . . . . . . . . . . . . . divide by -2

  (x2^2 +3/2x +(3/4)^2) -1 -(3/4)^2 = 0 . . . . . complete the square

  (x +3/4)^2 = 25/16 . . . . . add 25/16 and write as a square

  x +3/4 = ±5/4 . . . . . . . take the square root

  x = -3/4 ±5/4 = -8/4, +2/4

The x-intercepts are -2 and +1/2.

__

A y-intercept is always found on the line x=0. Setting x=0 and solving for y, we find ...

  y^2 = 2 -0 -0

  y = ±√2

The y-intercepts are -√2 and +√2.

_____

A graphing calculator can give you a good idea of what the intercepts are.

You might be interested in
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
The sum of the first three terms of a sequence is 6 and the fourth term is 16
Sati [7]

Answer:

              a₁ = -5, d = 7,  a₂ = 2, a₃ = 9, a₄ = 16

equation of sequence:    \boxed{\bold{a_n=7n-12}}

Step-by-step explanation:

a₁ + a₂ + a₃ = 6    

a₁ + a₁ + d + a₁ + 2d = 6

3a₁ + 3d = 6

a₁ + d= 2     ⇒ a₁ = 2 - d

a₄ = 16

a₁ + 3d = 16

2 - r + 3d = 16

2d = 14

d = 7

a₁ = 2-7 = -5

a₁ = -5, d = 7   ⇒  a₂ = -5+7 = 2, a₃ = 2+7 = 9, a₄ = 9+7 = 16

equation of arithmetic sequence:

a_n=a_1+d(n-1)\\\\a_n=-5+7(n-1)\\\\\underline{a_n=7n-12}

6 0
3 years ago
Chan is filling a box with 1-inch cubes. He filled the bottom layer as shown. Chan wants to completely fill the box. How many cu
IceJOKER [234]
The answer is D 174 cubes.
3 0
3 years ago
How to solve 2+(3-2×2)×1
UkoKoshka [18]

Answer:

Step-by-step explanation: First figure what’s in the parentheses. (3-2*2) wanna do 2*2 That’s 4 then (3-4) = -1. 2+(-1)*1. Then multiply -1 by 1 which is -1. Then 2+(-1)= 1

4 0
3 years ago
Rectangle ABCD is similar to rectangle JKLM. AB = 10, BC = 8, CD = 10, DA = 8, and JK = 15. The area of rectangle JKLM is ____u2
jeyben [28]
The area of rectangle ABCD would be 80.
6 0
3 years ago
Other questions:
  • Leslie needs 324 inches of fringe to put around the edge of a tablecloth. The fringe comes in lengths of 10 yard. If Leslie buys
    15·1 answer
  • What is 5.27 × 1021 expressed in standard notation?
    12·2 answers
  • List 3 values that would make this inequality true for 7 + x < 13
    5·1 answer
  • Question 7 of 10
    14·1 answer
  • Factor the following expression using the GCF: 42pr – 3p.<br> Please help!
    11·1 answer
  • 4y + 16 &gt; –8 solve the Inequalities help plz
    8·2 answers
  • How do you simplify an expression WITHOUT using algebra
    9·1 answer
  • Identify terms, coefficients, factors, and the constant: 5(2x + 4) + 3x
    6·2 answers
  • An airplane flying at an altitude of 12000 feet begins ascending at a rate of 900 per minute. At this rate, how many minutes wil
    10·1 answer
  • Describe how the graph of the function is related to the graph of its parent function.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!