The answer is C .12/15 since you can divide A,B,D and get 2/3 but you cannot with C
Answer:
13.228 pounds
Step-by-step explanation:
Formula:
for an approximate result, multiply the mass value by 2.205
Answer:
A. 502.4 cm^3
Step-by-step explanation:
r=8/2=4 cm
V=pi*r^2*h=3.14*16*10=502.4 cm^3 (A)
The tangent line to <em>y</em> = <em>f(x)</em> at a point (<em>a</em>, <em>f(a)</em> ) has slope d<em>y</em>/d<em>x</em> at <em>x</em> = <em>a</em>. So first compute the derivative:
<em>y</em> = <em>x</em>² - 9<em>x</em> → d<em>y</em>/d<em>x</em> = 2<em>x</em> - 9
When <em>x</em> = 4, the function takes on a value of
<em>y</em> = 4² - 9•4 = -20
and the derivative is
d<em>y</em>/d<em>x</em> (4) = 2•4 - 9 = -1
Then use the point-slope formula to get the equation of the tangent line:
<em>y</em> - (-20) = -1 (<em>x</em> - 4)
<em>y</em> + 20 = -<em>x</em> + 4
<em>y</em> = -<em>x</em> - 24
The normal line is perpendicular to the tangent, so its slope is -1/(-1) = 1. It passes through the same point, so its equation is
<em>y</em> - (-20) = 1 (<em>x</em> - 4)
<em>y</em> + 20 = <em>x</em> - 4
<em>y</em> = <em>x</em> - 24
Answer:
The average rate of change of the function from x=1 to x=2 will be: 10.5
Step-by-step explanation:
Given the function

at x₁ = 1,
f(x₁) = f(1) = -14/(1)² = -14/1 = -14
at x₂ = 2,
f(x₂) = f(2) = -14/(2)² = -14/(4) = -3.5
Using the formula to determine the average rate of change at which the total cost increases will be:
Average rate of change = [f(x₂) - f(x₁)] / [ x₂ - x₁]
= [-3.5 - (-14)] / [2 - 1]
= [-3.5 + 14] / [1]
= 10.5 / 1
= 10.5
Therefore, the average rate of change of the function from x=1 to x=2 will be: 10.5