Gain a higher average kinetic energy. Rearrange into a more chronological order state, closer together, and they move more slowly.
Answer:
0.01 moles of SrCO₃
Explanation:
In this excersise we need to propose the reaction:
K₂CO₃ + Sr(NO₃)₂ → 2KNO₃ + SrCO₃
As we only have data about the potassium carbonate we assume the strontium nitrite as the excess reactant.
1 mol of K₂CO₃ react to 1 mol of Sr(NO₃)₂ in order to produce 2 moles of potassium nitrite and 1 mol of strontium carbonate.
Ratio is 1:1. In conclussion,
0.01 mol of K₂CO₃ must produce 0.01 moles of SrCO₃
Answer:
The term "pseudo-science" assumes a criterion that allows a differentiation between science and nonscience, good science and bad science, true and false. ... They must try to understand them and not put out in television programmes the sort of pseudo-science that does not exist in reality
Explanation:
Yes, the atoms of the elements do have different masses but the same volume
Answer:
0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃
Explanation:
We are comparing acids with the same concentration. So what we have to do first is to determine if we have any strong acid and for the rest ( weak acids ) compare them by their Ka´s ( look for them in reference tables ) since we know the larger the Ka, the more Hydronium concentration will be in these solutions at the same concentration.
HNO₃ is a strong acid and will have the largest hydronium concentration.
HCN Ka = 6.2 x 10⁻¹⁰
HNO₂ Ka = 4.0 x 10⁻⁴
HClO Ka = 3.0 x 10⁻⁸
The ranking from smallest to largest hydronium concentration will then be:
0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃