Answer:
the animal
Explanation:
a rodent thas in the ground
Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
No of moles= 88/44 =2
therefore no. of molecules =
therefore no.of molecules= 12.046*10^23
Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
Answer:
the answer is 6
Explanation:
there is 3 hydrogen molecules in NH3 and there's 2 molecules of NH3 so in total, there are 6 hydrogen molecules on the products side.