It would have to increase pressure... but I don’t see that option here..?
The uncertainties of the delta measurements and the uncertainty of the atomic weight derivedfrom the best measurement of isotopic abundances constrain the number of significant figures in theatomic-weight values of the upper and lower bounds. For carbon, the fifth digit after the decimal pointis uncertain because of the uncertainty value of 0.000 027. Therefore, the number of significant digitsin the atomic-weight value is reduced to four figures after the decimal point. The Commission may rec-ommend additional conservatism and reduce the number of significant figures further. For the lowerbound of carbon, 12.009 635 is truncated to 12.0096. For an upper bound, the trailing digit is increasedto ensure the atomic-weight interval encompasses the atomic-weight values of all normal materials. Inthe case of carbon, the upper bound is adjusted from 12.011 532 to 12.0116 to express four digits afterthe decimal point. The lower and upper bounds are evaluated so that the number of significant digits ineach is identical. If a value ends with a zero, it may need to be included in the value to express therequired number of digits. The following are examples of lower and upper atomic-weight bounds foroxygen that could be published by the Commission in its various tables.
---------------------------
Extracted from" Atomic weights of the elements 2009 (IUPAC Technical Report)"
Titanium is the haviest metal .
The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4