Dada una ecuación de la forma
<h3>y = A sin(B(x + C)) + D</h3>
Tenemos que:
- la amplitud es A
- el periodo es 2π/B
- el desfase es C (a la izquierda es positivo)
- el desplazamiento vertical es D
Sabemos que:
f(x)=1+6Sen(2x+π/3)
Y podemos reescribirla como:
f(x)=6Sen(2(x+π/6))+1
Siendo:
- A = 6 → Amplitud
- T = 2π/B = 2π/2 = π → Período
- C = π/6 → Desfase
- El dominio de un a función trigonométrica es todo el conjunto de los números reales (x ∈ R ).
La imagen de una función trigonométrica de esta forma es:
y ∈ [-A+D,A+D]
y ∈ [-6+1, 6+1]
y ∈ [-5,7]
La gráfica se adjunta.
Answer:
Step-by-step explanation:
200 p²-12028p+180096=0
50 p-3007 p +45024=0

I'll assume the ODE is

Solve the homogeneous ODE,

The characteristic equation

has roots at
and
. Then the characteristic solution is

For nonhomogeneous ODE (1),

consider the ansatz particular solution

Substituting this into (1) gives

For the nonhomogeneous ODE (2),

take the ansatz

Substitute (2) into the ODE to get

Lastly, for the nonhomogeneous ODE (3)

take the ansatz

and solve for
.

Then the general solution to the ODE is

Answer:
312cm2
Step-by-step explanation:
Area of the triangles:
A =1/2bh
A=1/2(10*12) = 1/2*120=60.
There are two triangles. 60*2=120. 120 is the area of both triangles.
Area of the rectangle:
16*12=192.
120+192=312cm2
The <em>instantaneous</em> rate of change of <em>g</em> with respect to <em>x</em> at <em>x = π/3</em> is <em>1/2</em>.
<h3>How to determine the instantaneous rate of change of a given function</h3>
The <em>instantaneous</em> rate of change at a given value of
can be found by concept of derivative, which is described below:

Where
is the <em>difference</em> rate.
In this question we must find an expression for the <em>instantaneous</em> rate of change of
if
and evaluate the resulting expression for
. Then, we have the following procedure below:




Now we evaluate
for
:

The <em>instantaneous</em> rate of change of <em>g</em> with respect to <em>x</em> at <em>x = π/3</em> is <em>1/2</em>. 
To learn more on rates of change, we kindly invite to check this verified question: brainly.com/question/11606037