Answer:
1.4719 m per sec
Explanation:
Hello
Kinetic energy is the energy associated with the movement of objects. Although there are many forms of kinetic energy
the formula to use is

where m is the mass of the object and v the velocity
lets see the kinetic energy of the sprinter running

Now, the elephant must have the same kinetic energy

it works only the positive root, so the elephant must to walk to 1.4719 m/s to have the same kinetic energy.
Have a great day
The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively
To calculate the acceleration of the plane, we use the formula below.
<h3>Formula:</h3>
- a = F/m..................... Equation 1
Where:
- a = Acceleration of the plane
- F = Force applied to the plane
- m = mass of the plane.
From the question,
Given:
Substitute these values into equation 1
- a = 550000/7000
- a = 78.57 m/s²
To calculate the velocity, we use the formula below.
- v = u+at............. Equation 2
Where:
- v = Final velocity
- u = initial velocity
- a = acceleration
- t = time.
From the question,
Given:
- u = 0 m/s
- a = 78.57 m/s
- t = 2.0 seconds
Substitute these values into equation 2
Hence, The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively.
Learn more about acceleration here: brainly.com/question/460763
Yesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Answer:
c. 43 m/s
Explanation:
Given the following data;
Displacement, S = 90 meters
Time, t = 5.55 seconds
To find the initial velocity;
We would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
We know that acceleration due to gravity is -9.8m/s² because the direction is downward.
Substituting into the equation, we have;



Rearranging the equation, we have;



Initial velocity, u = 43.41 ≈ 41 m/s