Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
For further investigation see also the most recent World Population Data ... and Latin America and the Caribbean, and the regions of Melanesia, ... While Germany's death rate exceeds its birth rate, its population ... Population growth accelerated.
(Example 1 )
<span>If the Voltage that furnishes the current is an ideal (no internal resistance) Voltage source. Then; </span>
<span>V/R = i </span>
<span>V/2R = i/2 If external resistance doubles, current reduced to 1/2 of original value </span>
<span>V/3R = i/3 If external resistance triples, current reduced to 1/3 of original value </span>
<span>(Example 2) </span>
<span>But if the Voltage that furnishes the current is a practical [contains an internal resistance (Ri)] Voltage source. Then the current is a function of the Voltage source`s internal resistance, which does not double nor triple, plus the external resistance which is being doubled and tripled. </span>
<span>V/(R + Ri) = i </span>
<span>V/(2R + Ri) = greater than i/2 but less than I. </span>
<span>V/(3R + Ri) = greater than i/3 but less than i/2</span>
Answer: Δβ (dB) = -13.1dB
Explanation:
The intensity of sound is inversely proportional to the square of the distance between them.
I ∝ 1/r²
I₁/I₂= r₂²/r₁² .....1
When the listener increases his distance from the source by a factor of 4.49.
Then,
r₂/r₁= 4.49
From equation 1
I₁/I₂ = (4.49)²
I₁/I₂ = 20.16
I₂/I₁ = 1/20.16
The change in sound intensity in dB can be given as
Δβ (dB) = 10 log(I₂/l₁) = 10log(1/20.6) = -13.1dB

where
is the gravitational constant and is about 

:D