If the force equals, for instance, 100 Newtons then 0.866 × 100 = 86.6 Newtons. This is the magnitude of the resultant force vector on the object.
Answer:
3.65 x mass
Explanation:
Given parameters:
Time = 20s
Initial velocity = 0m/s
Final velocity = 73m/s
Unknown:
Force the ball experience = ?
Solution:
To solve this problem, we apply the equation from newton's second law of motion:
F = m
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
So;
F = m (
) = 3.65 x mass
Answer:
Explanation:
Given:
A = 589 J
D = 1 100 m
____________
F - ?
A = F·D
F = A / D = 589 / 1100 ≈ 0.54 N
It will cause corrosion of the wire inside
Answer:
increases by a factor of 
Explanation:
First we need to find the initial velocity for it to stop at the distance 2d using the following equation of motion:

where v = 0 m/s is the final velocity of the package when it stops,
is the initial velocity of the package when it, a is the deceleration, and
is the distance traveled.
So the equation above can be simplified and plug in Δs = d,
for the 1st case
(1)
For the 2nd scenario where the ramp is changed and distance becomes 2d, 
(2)
let equation (2) divided by (1) we have:



So the initial speed increases by
. If the deceleration a stays the same and time is the ratio of speed over acceleration a

The time would increase by a factor of 