Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
<span>The rate of reaction may be expressed as a unit of quantity divided by a unit of time. The only expression that has a quantity divided by time is the first one mL / s (i.e. milliliter per second), so the answer is the first option, mL/s.</span><span />
Answer:
The oxidation state of Cl in HCIO3 is <u><em>+5</em></u>
Answer:
according to online:
"Hydrogen ions are transported with the electrons along the chain of reactions. In photosystem I, the electrons are energized, and the energy is stored in molecules of NADP+. During these reactions, the NADP+ molecules are reduced by the addition of electrons. A hydrogen ion is added to NADP+ to form NADPH."
Explanation:
hope this helps!! :)