<span>To find the mass of 3.00 moles of magnesium chloride (MgCl2), first record the atomic mass of magnesium (Mg) and chloride (Cl), which are both listed on the periodic table as follows:
Mg=24 g/mole
Cl=38 g/mole
Now, double the Cl mass since there are 2 Cl moles in MgCl2 and then add it to the Mg mass like so:
(38 g/mole*2 moles)+24 g/mole=100 g/mole
Finally, to calculate the mass of 3.00 moles of MgCl2, convert the combined atomic mass to grams as follows:
3.00 moles * 100 g/mole = 300 g</span>
Answer:
mass HF = 150.05 g
Explanation:
- SiO2(s) + 4HF(g) → SiF4(g) + 2H2O(l)
⇒ Q = (ΔH°rxn * mHF) / (mol HF * MwHF )
∴ MwHF = 20.0063 g/mol
∴ mol HF = 4 mol
∴ ΔH°rxn = - 184 KJ
∴ Q = 345 KJ
mass HF ( mHF ):
⇒ mHF = ( Q * mol HF * MwHF ) / ΔH°rxn
⇒ mHF = ( 345 KJ * 4mol HF * 20.0063 g/mol ) / 184 KJ
⇒ mHF = 150.05 g HF
Just add up the molar masses of each element.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.