Answer:
0.2755
Step-by-step explanation:
We intend to make use of the normal approximation to the binomial distribution.
First we'll check to see if that approximation is applicable.
For p=10% and sample size n = 500, we have ...
pn = 0.10(500) = 50
This value is greater than 5, so the approximation is valid.
__
The mean of the distribution we'll use as a model is ...
µ = p·n = 0.10(500)
µ = 50
The standard deviation for our model is ...
σ = √((1-p)µ) = √(0.9·50) = √45
σ ≈ 6.708204
__
A continuity correction can be applied to better approximate the binomial distribution. We want p(t ≤ 9.1%) = p(t ≤ 45.5). For our lookup, we will add 0.5 to this limit, and find p(t ≤ 46).
The attached calculator shows the probability of fewer than 45.5 t's in the sample is about 0.2755.
Answer:
2
Step-by-step explanation:
Answer:
390625
Step-by-step explanation:
The questions are all independent -- the answer on one question does not limit the number of possible answers on another question.
The quiz has 5 choices for each question, so there are
ways to answer the quiz questions.
Notice that this could be written
. You could say that the number of ways to answer the questions is

Use a calculator to find 
Answer:
Y=3x+3
Step-by-step explanation:
Answer: yuh
Step-by-step explanation:
yuh