Answer:
The solution will turn red.
Explanation:
HC₁₄H₁₄SO₃ + H₂O ⇌ HC₁₄H₁₄SO₃⁻ +H₃O⁺
(red) (yellow)
Methyl orange is a weak acid in which the ionized and unionized forms are distinct colours and are in equilibrium with each other,
At about pH 3.4, the two the forms are present in equal amounts, and the indicator colour is orange.
If you add more acid, you are disturbing the equilibrium.
According to Le Châtelier's Principle, when you apply a stress to a system at equilibrium, it will respond in such a way as to relieve the stress.
The system will try to get rid of the added acid, so the position of equilibrium will move to the left.
More of the unionized molecules will form, so the solution will turn red.
B Im sirloin steak so I think that’s the answer
A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
The correct answer is c. Please give me brainlest let me know if it’s correct or not thanks bye