If the length of a string increases 2 times but the mass of the string remains constant, the original density will be multiplied by a factor mathematically given as
v=1.414 times
<h3>Will the new density of the string equal the original density multiplied by what factor?</h3>
Generally, the equation for the volume is mathematically given as
v = sqt(TL/m)
Where
density = mass/length
Therefore


In conclusion,v ratio will give us
v=1.414 times
Read more about volume
brainly.com/question/1578538
A wooden spoon insulates itself and retains no heat, a mental spoon would retain heat, and probably burn your hand<span />
The answer is oxidation.
That is in the redox fueling reaction,
succinate + NAD ↔fumarate + NADPH, the succinate molecule is undergoing oxidation.
As succinate molecule is providing electrons to NAD, so that it can be reduced from NAD to NADPH. So it is losing electrons and undergoing oxidation.
So the answer is oxidation.
1. Answer is d. all of the above.
Climate can be defined as the data collection of weather conditions of a long period of time in a certain area. The weather conditions that affect to the climate are temperature, precipitation, atmospheric pressure, wind and so on. Any changes in weather can change the global climate.
2. Answer is c. ozone.
Trees release oxygen and water vapor into the atmosphere but not ozone. The oxygen gas is released by trees as the by-product of photosynthesis. This is the natural way of production of oxygen gas. Water vapor can be released due to the transpiration of trees.
Answer:
dipole-dipole forces, ion-dipole forces, higher molar mass, hydrogen bonding, stronger intermolecular forces
Explanation:
<em>1. H₂S and H₂Se exhibit the following intermolecular forces: </em><em>dipole-dipole forces </em><em>and </em><em>ion-dipole forces</em><em>.</em> These molecules have a bent geometry, thus, a dipolar moment which makes them dipoles. When they are in the aqueous form they are weak electrolytes whose ions interact with the water dipoles
<em>2. Therefore, when comparing H₂S and H₂Se the one with a </em><em>higher molar mass</em><em> has a higher boiling point.</em> In this case, H₂Se has a higher boiling point than H₂S due to its higher molar mass.
<em>3. The strongest intermolecular force exhibited by H₂O is </em><em>hydrogen bonding</em><em>. </em>This is a specially strong dipole-dipole interaction in which the positive density charge on the hydrogens is attracted to the negative density charge on the oxygen.
<em>4. Therefore, when comparing H₂Se and H₂O the one with </em><em>stronger intermolecular forces</em><em> has a higher boiling point. </em>That's why the boiling point of H₂O is much higher than the boiling point of H₂Se.