Answer: <u>Archimedes</u>
Step-by-step explanation:
Answer:
- 11 or - 15
Step-by-step explanation:
Factorise
x² - 13x + 42
Consider the factors of the constant term (+ 42) which sum to give the coefficient of the x- term (- 13)
The factors are - 6 and - 7, since
- 6 × - 7 = + 42 and - 6 - 7 = - 13, thus
x² - 13x + 42 = (x - 6)(x - 7)
compare to (x + A)(x + B)
A = - 6, B = - 7
thus 3A - B = 3(- 6) - (- 7) = - 18 + 7 = - 11
The factors may also be expressed as (x - 7)(x - 6)
with A = - 7 and B = - 6, then
3A - B = 3(- 7) - (- 6) = - 21 + 6 = - 15
The given expression is ![3b^2*(\sqrt[3]{54a}) + 3*(\sqrt[3]{2ab^6})](https://tex.z-dn.net/?f=%203b%5E2%2A%28%5Csqrt%5B3%5D%7B54a%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2ab%5E6%7D%29%20)
This can be simplified as :
= ![3*b^2*(\sqrt[3]{27 *2*a}) + 3*(\sqrt[3]{2*a*b^6})](https://tex.z-dn.net/?f=%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B27%20%2A2%2Aa%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2%2Aa%2Ab%5E6%7D%29%20)
We know that: ![\sqrt[3]{27} = 3](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B27%7D%20%20%3D%203%20%20%20)
Similarly we also can simplify: ![\sqrt[3]{b^6} = b^2](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7Bb%5E6%7D%20%20%3D%20b%5E2%20)
So our expression will look like this:
= ![3*3*b^2*(\sqrt[3]{2a}) + 3*b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%203%2A3%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
= ![9b^2*(\sqrt[3]{2a}) + 3b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%209b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
=![\sqrt[3]{2a}*(9b^2 + 3b^2)](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7B2a%7D%2A%289b%5E2%20%2B%203b%5E2%29%20)
=![\sqrt[3]{2a}*(12b^2)](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B2a%7D%2A%2812b%5E2%29%20)
This can also be written as:
![12b^2(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%2012b%5E2%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
So the Answer is Option B
Answer:
v= -1
Step-by-step explanation:
5+2v=3
2v=3-5
2v= -2
v= -2/2
v= -1
Answer:
No solution
Step-by-step explanation:
Note how "2x" shows up in both equations. This suggests doing a substitution to solve the system.
Focus first on the first equation. Solving 2x - y = 7 for 2x, we get:
2x = y + 7.
Next, we substitute y + 7 for 2x in the second equation:
y = (y + 7) + 3.
Simplifying this produces:
0 = 10
This is not true and can never be true. Thus, this system has no solution.