D) Contain Chemical bonds.
Answer:
Lead atoms have 82 electrons and the shell structure is 2.8. 18.32. 18.4.
Explanation:
The ground state electron configuration of ground state gaseous neutral lead is [Xe].
There are several ways to give an object potential energy. One can move the object against the force of gravity to increase. One can also stretch an object out or put pressure on it.
<h3>
Answer:</h3>
0.35 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial volume as 35.0 mL or 0.035 L
- Initial molarity as 12.0 M
- Final volume is 1.20 L
We are required to determine the final molarity of the solution;
- Dilution involves adding solvent to a solution to make it more dilute which reduces the concentration and increases the solvent while maintaining solute constant.
- Using dilution formula we can determine the final molarity.
M1V1 = M2V2
M2 = M1V1 ÷ V2
= (12.0 M × 0.035 L) ÷ 1.2 L
= 0.35 M
Thus, the final concentration of the solution is 0.35 M
Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water