Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
<span>The answer is D)<em> </em>are compounds that have the same number and types of atoms but are arranged differently.
Source: <em>just took the test :)</em></span>
Solution is here,
for initial case,
temperature(T1)=70°C=70+ 273=343K
vloume( V1) =45 L
for final case,
temperature( T2)=?
volume(V2)= 91.3 L
at constant pressure,
V1/V2 = T1/T2
or, 45/91.3 = 343/ T2
or, T2= (343×91.3)/45
or, T2=695.9 K = (695.9-273)°C=422.9°C