Please show picture of diagrams
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Density 
Velocity of wind 
Dimension of rectangle:50 cm wide and 90 cm
Drag coefficient 
a)
Generally the equation for Force is mathematically given by



Therefore Torque



b)
Generally the equation for torque due to weight is mathematically given by

Where

Therefore




Answer:
1.137278672 m/s
+5.9 cm or -5.9 cm
Explanation:
A = Amplitude = 6.25 cm
m = Mass of object = 225 g
k = Spring constant = 74.5 N/m
Maximum speed is given by

The maximum speed of the object is 1.137278672 m/s
Velocity is at any instant is given by

The locations are +5.9 cm or -5.9 cm
We use the formula, to calculate the average speed of the round trip,

Here,
, is total distance covered by plane in total time,
.
For the round trip,

.
Thus,
.