Answer:
12
Step-by-step explanation:
The relevant formula that we can use in this situation is:
v = v0 + at
where v is the final velocity, v0 is the initial velocity
= 20 km/hr, a is acceleration at 3.4 m/s^2 and t is time at 20 seconds
First convert v0 to m/s, v0 = 5.56 m/s
v = 5.56 m/s + 3.4 m/s^2 * 20 s
v = 73.56 m/s
Then convert back to km/hr:
<span>v = 264.82 km/hr</span>
Answer:
56
Step-by-step explanation:
i don't know
Started out with 32/32. They ate 18/32, 32-18=14; 14/32. To simplify, 7/16 was left.
Answer: Average rates of change for Bird A is 0.045 and for Bird B is 3.816.
Step-by-step explanation: Through its graph, a function can be analyzed and be identified its attributes. Average Rate of Change is the ratio of change in the function values to the change of x-value, i.e., it is the slope of the function in a specific interval of x. With the Average it is possible to compare two function.
<u>Average Rate of Change</u>
<em><u>Bird A</u></em>:
For the interval [0,18]:
x₁ = 0 f(0) = 8.3
x₂ = 18 f(18) = 9.1
Average =
Average = 
Average = 0.045
<em><u>Bird B</u></em>: y = 3.6(1.06)x
For the interval [0,18]:
x₁ = 0 y = 3.6(1.06)0 = 0
x₂ = 18 y = 3.6(1.06)18 = 68.7
Average =
Average = 
Average = 3.816
The Average Rate for Change for Bird A is 0.045 and for Bird B is 3.816. This means that the population of Bird B increase in rate faster than the population of Bird A.