Refer to the diagram shown below.
The mass of the car is 1170 kg, therefore its weight is
W = (1170 kg)*(9.8 m/s²) = 11466 N
The component of the weight acting down the incline is
F = W sin(25°) = (11466 N)*sin(25°) = 4845.7 N
The normal reaction from the inclined plane is
N = W cos(25°) = (11466 N) cos(25°) = 1039.2 N
T = tension in the cable, acting at 31° above the surface of the ramp.
The Free Body Diagram on the right shows all the forces (friction is ignored)
and they FDB is sufficient for determining the value of T which establishes equilibrium.
Answer:
T = 27.92 N
Explanation:
For this exercise let's use Newton's second law
T - W = m a
The weight
W = mg
The acceleration can be found by derivatives
a = dv / dt
v = 2 t + 0.6 t²
a = 2 + 0.6 t
We replace
T - mg = m (2 + 0.6t)
T = m (g + 2 + 0.6 t) (1)
Let's look for the time for the speed of 15 m / s
15 = 2 t + 0.6 t²
0.6 t² + 2 t - 15 = 0
We solve the second degree equation
t = [-2 ±√(4 - 4 0.6 (-15))] / 2 0.6
t = [-2 ±√40] / 1.3 = [-2 ± 6.325] / 1.2
We take the positive time
t = 3.6 s
Let's calculate from equation 1
T = 2.00 (9.8 + 2 + 0. 6 3.6)
T = 27.92 N
Explanation:
When water is boiled in the flask . Some portion of it is evaporated out . Now when cork is placed on it and is placed in the ice box . It cools down , by which the pressure inside decreases .
Due to decrease of pressure , the boiling point of water also decreases . Now it can boil at lower temperature . Thus it starts boiling at lower temperature even , when placed in the ice box .
Answer:
The sphere is positively charged
Explanation:
This is because when the positively charged rod is brought near the metal rod A, the electrons in metal rod A and sphere B are attracted towards it into metal rod A while the positive charges in the are repelled into sphere B. So, when the charged rod is withdrawn, and metal rod A and sphere B are separated, metal rod A is now negatively charged, but sphere B is positively charged.
So, sphere B is positively charged.