I think is a high-pressure system because it is only in one particular area.
Answer:
Both warming up and cooling down or not important
Answer:
The minimum force to start the block moving up the wall = 49 N
Explanation:
Friction: This is the force that tend to oppose the motion of two bodies in contact. The S.I unit of frictional force is Newton (N)
The minimum force required to start the block moving up the wall = Frictional Force.
I.e F = Frictional force.
And, F = μR..........................Equation 1
Where μ = coefficient of static friction, R = Normal reaction.
But R = mg ( on a level surface).................. Equation 2
Where m = mass, g = acceleration due to gravity.
Given: m = 10 kg,
Constant: g = 9.8 m/s²
substituting these values into Equation 2
R = 10 × 9.8
R = 98 N.
Also given: μ = 0.50
Substituting these values into equation 1
F = 98 × 0.5
F = 49 N.
Therefore The minimum force to start the block moving up the wall = 49 N
Given the index of refraction, n and speed of light in the vacuum, c, we can solve for the speed of light in the transparent substance by the equation below.
n = c / v
where v is our unknown.
Substituting the known values,
1.7 = (3 x 10^8 m/s) / v
The value of v is equal to 1.76 x 10^8 m/s.
Answer:
The heat flows into the gas during this two-step process is 120 cal.
Explanation:
Given that,
Number of moles = 3
Heat capacity at constant volume = 4.9 cal/mol.K
Heat capacity at constant pressure = 6.9 cal/mol.K
Initial temperature = 300 K
Final temperature = 320 K
We need to calculate the heat flow in to gas at constant pressure
Using formula of heat
Put the value into the formula
We need to calculate the heat flow in to gas at constant volume
Using formula of heat
Put the value into the formula
We need to calculate the heat flows into the gas during two steps
Using formula of total heat
Hence, The heat flows into the gas during this two-step process is 120 cal.