1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
9

Please I need your help

Physics
1 answer:
frez [133]3 years ago
5 0
1.14 km = Distance
2.30 m/s = Speed
5.12 cm/s2 = Speed
6.150 mph = Distance
8.3.2 sec = Speed
9.25 ft = Distance
You might be interested in
HELPP ITS DUE IN 5 MINUTES FREE BODY DIAGRAMS
Rashid [163]

Answer:

C i think sorry if inmccorect

Explanation:

5 0
3 years ago
Read 2 more answers
Suppose that a sled is accelerating at a rate of 2 m/s^2. if the net force is tripled and the mass is doubled, then what is the
Gwar [14]
So new acceleration is 3 m/s^2

6 0
3 years ago
Two small spheres assumed to be identical conductors are placed at 30 cm from each other on a horizontal axis. the first S1 is l
charle [14.2K]

a) The electric force exerted by S1 on S2 is 21.58μN.

In this case we are talking about two different types of charges, a positive charge and a negative charge, therefore, they are sensing a force of attraction.  

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

where:

= Electric force [N]

= Electric constant ()

= First charge [C]

= Second charge [C]

r =  distance between the two charges

So, in this case, the force can be calculated like this:

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

b) The electric field created by S1 at the level of S2 is 1.20 \frac{kN}{C}

The electric field tells us how many Newtons of force can be applied on a given point in space per unit of charge caused by an existing electric charge. From the concept, we can take the following formula for the electric field.

E_{S1}=\frac{F_{e}}{q_{2}}

where:

= electric field generated by the first sphere.

 

E_{S1}=\frac{1.20 x10^{-6}N}{18x10^{-9}C}

which yields:

E_{S1}=1.20x10^{3} \frac{N}{C}

E_{S1}=1.20 \frac{kN}{C}

When talking about electric fields, we know what their direction is if we suppose the electric field is always affecting a positive charge in the given point in space. In this case, since S1 is positive, we can asume the electric field is in a direction away from S1.

c)

The electric potential created by S1 at the level or S2 is 360V

Electric potential is defined to be the amount of energy you will have at a given point per electric charge. This electric potential can be found by using the following formula:

V=Er

Where V is the electric potential and it is given in volts.

  • Volts are defined to be 1 Joule per Coulomb. Energy by electric charge.

So we can use the data found in the previous sections to find the electric potential:

V=(1.20x10^{3} \frac{N}{C})(30x10^{-2}m)

V=360V

d)  The force exerted by S2 on S1 will be the same in magnitude as the force exerted by S1 on S2 but oposite in direction. This is because the force will depend on the two charges, and the distance between them, so:

The electric force exerted by S1 on S2 is 21.58μN.

 

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

e) The electric field generated by S1 in the middle of S1 and S2 is 4.79 \frac{kN}{C}

In order to find the electric field generated by S1, we can make use of the following formula

E=k_{e} \frac{q_{1}}{r_{1}^{2}}

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}})

which yields:

E=4.79 \frac{kN}{C}

f)  The electric field in the middle of S1 and S2 is 11.99 \frac{kN}{C}

In order to find the electric field generated by two different charges at a given point is found by using the following formula:

E=k_{e} \sum \frac{q_{i}}{r_{i}^{2}}

where:

q_{i}= each of the charges in the system

r_{i}= the distance between each of the charges and the point we are analyzing.

Since the electric field is a vector, we need to take into account the individual electric fields' directions. In this case we suppose we have a positive test charge between the two charges. We can see that the positive test charge will sense a force in the same direction independently on if the force is excerted by the positive charge or the negative charge. Therefore both electric fields will have the same direction. We'll suppose the electric fields will be positive then, so:

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})[\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}}+\frac{18x10^{-9}C}{(15x10^{-2}m)^{2}}]

which yields:

E=11.99 \frac{kN}{C}

g) The electric potential in the middle of S1 and S2 is 1.80 kV

Since we know what the electric field is from the previous question, we can make use of the same formula we used before to find the electric potential in the middle of S1 and S2

So let's take the formula:

V=Er

So we can use the data found in the previous sections to find the electric potential:

V=(11.99x10^{3} \frac{N}{C})(15x10^{-2}m)

V=1.80kV

h)

The electric potential generated by S2 on the position of S1 is 539.4V and can be found by using the following formula:

V=k_{e}\frac{q_{2}}{r}

So we can use the data provided by the problem to find the electric potential.

V=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{18x10^{-9}C}{30x10^{-2}m})

V=539.4V

8 0
3 years ago
A trough in a transverse wave corresponds to a ________ <br> In a longitudinal wave.
kakasveta [241]

Answer:

compression

Explanation:

mark me brainliest!!

5 0
2 years ago
Read 2 more answers
A 1-lb block and a 100-lb block are placed side by side at the top of a frictionless hill. Each is given a very light tap to beg
qwelly [4]

Answer:

(c). The two blocks end in a tie

Explanation:

the reason being the absence of any resistance offered to both of the blocks.

if the slope of the hill is for instance 60 deg.

then the acceleration in absence of any resistance is a= 9.81sin(60)

since the acceleration is same then both of the blocks will reach at the same instant

4 0
4 years ago
Other questions:
  • Find the electric force acting on an alpha particle in a horizontal electric field of 600N/C
    10·1 answer
  • Which letters in the image represent the heart's ventricles?
    14·2 answers
  • What is the defining feature of a system?  A. properties that don’t change  B. collision   C. interaction   D. gravitational for
    7·1 answer
  • Im a freshman in highschool pls help
    10·1 answer
  • Which of the following is not in our sun's future?
    14·1 answer
  • What is the new kinetic energy of the 1900 kg ship on the right moving at 4 m/s?
    13·2 answers
  • A charged capacitor and an inductor are connected in series. At time t = 0, the current is zero, but the capacitor is charged. I
    10·1 answer
  • The rate (in liters per minute) at which water drains from a tank is recorded at half-minute intervals. Use the average of the l
    9·1 answer
  • How much work do you do, when you lift a 155 n child .8 m?
    10·1 answer
  • Si se aplica una fuerza de 3n sobre un sistema se genera 15000 cal de calor generandose a su vez un trabajo de 300 j ¿en cuanto
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!