Answer: reliable
Explanation:
Reliable (marketing research) information is collected from questions (measurements) that are free from systematic or statistical error. An absence of systematic error implies that the respondents (i.e., the sampled people) who answer questions actually understand what the questions were asking.
Answer:
m = 236212 [kg]
Explanation:
The potential energy can be determined by means of the product of mass by gravity by height. In this way, we have the following equation.

where:
P = potential energy = 3360000000 [J]
m = mass [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 1450 [m]
Now, we can clear the mass from the equation above:
![3360000000=m*9.81*1450\\m = 236212 [kg]](https://tex.z-dn.net/?f=3360000000%3Dm%2A9.81%2A1450%5C%5Cm%20%3D%20236212%20%5Bkg%5D)
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>