Answer:
e = 0.0898m
v = 2.07m/s
Explanation:
a) According to Hooke's law
F = ke
e is the extension
k is the spring constant
Since F = mg
mg = ke
e = mg/k
Substitute the given value
e = 1.1(9.8)/120
e = 10.78/120
e = 0.0898m
Hence it is stretched by 0.0898m from its unstrained length
2) Total Energy = PE+KE+Elastic potential
Total Energy = mgh +1/2mv²+1/2ke²
Substitute the given value
5.0= 1.1(9.8)(0.2)+1/2(1.1)v²+1/2(120)(0.0898)²
Solve for v
5.0 = 2.156+0.55v²+0.48338
5.0-2.156-0.48338= 0.55v²
2.36 =0.55v²
v² = 2.36/0.55
v² = 4.29
v ,= √4.29
v = 2.07m/s
Hence the required velocity is 9.28m/s
To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
We Know, P = m*v
Here, m = 30 Kg
v = 5 m/s
Substitute it into the expression,
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps!
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative.
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct.
For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
</span>