Write a balance equation for the reaction between the analyte and the titrant.
Calculate the # of moles of titrant using the volume of titrant required and the concentration of titrant.
Calculate the # of moles of analyte using the stoichiometric coefficients of the equation.
Calculate the concentration of the analyte using the number or moles of analyte and the volume of analyte titrated.
The given reaction:
<span>ch3ch2cooh (aq) ↔ ch3ch2coo- (aq) + h+ (aq)
is called a reversible reaction.
This means that, the reaction does not reach an end point.
In this type of reactions, reactants react together to form products, while products combine together to form reactants.
So, the reaction proceeds in both direction forming both reactants and products.</span>
<h3>
Answer:</h3>
0.90J/g°C
<h3>
Explanation:</h3>
We are given:
Mass of Aluminium = 10 g
Quantity of heat = 677 Joules
Change in temperature = 125°C - 50°C
= 75°C
We are required to calculate the specific heat capacity of Aluminium
But, Quantity of heat = Mass × specific heat × Change in temperature
Q = mcΔt
Rearranging the formula;
c = Q ÷ mΔt
= 677 J ÷ (10 g × 75°C)
= 677 J ÷ 750g°C
= 0.903 J/g°C
= 0.90J/g°C
Thus, the specific heat capacity of Aluminium is 0.90J/g°C
Answer:
0.17 lb
Explanation:
78 g * (1 lb/454 g)=0.17 lb
If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.