Answer:
approximately 15.1 grams.
Explanation:
The key to chemistry is to change everything to moles. Then when you have the answer in moles change the answer back to grams, liters, or whatever you want.
change 25 grams of potassium chlorate to moles.
calculate the gram molecular mass of potassium chlorate.
Chlorate is Cl with 3 oxygens. ate = saturated. Chlorine has seven valance electrons when it is saturated six of these electrons are used by oxygen ( 2 electrons per oxygen) leaving only 1 electron.
1 K x 39 grams/mole
+1 Cl x 35.4 grams/ mole
+3 O x 16 grams/ mole
= 122.4 grams / mole Potassium Chlorate
25
122.4
= moles.
2.05 moles of Potassium Chlorate.
There is a 1:1 mole ratio. 1 mole of Potassium Chlorate will produce 1 mole of Potassium Chloride.
2.05 moles of Potassium Chlorate will produce 2.05 moles of Potassium Chloride.
Find the gram molecular mass of Potassium Chloride.
1 K x 39 = 39
+1 Cl x 35.4 = 35.4
= 74.4 grams / mole.
2.05 moles x 74.4 grams/ mole = 15.2 grams
Answer:
2KClO3 —> 2KCl + 3O2
The coefficients are 2, 2, 3
Explanation:
From the question given above, we obtained the following equation:
KClO3 —> 2KCl + 3O2
The above equation can be balance as follow:
There are 2 atoms of K on the right side and 1 atom on the left side. It can be balance by putting 2 in front of KClO3 as shown below:
2KClO3 —> 2KCl + 3O2
Now, the equation is balanced.
Thus, the coefficients are 2, 2, 3
the anwser would most likely be j=0
Answer:
2. 
3. 
Explanation:
Hello there!
2. In this case, we can evidence the problem by which volume and temperature are involved, so the Charles' law is applied to:

Thus, considering the temperatures in kelvins and solving for the final volume, V2, we obtain:

Therefore, we plug in the given data to obtain:

3. In this case, it is possible to realize that the 3.7 moles of neon gas are at 273 K and 1 atm according to the STP conditions; in such a way, considering the ideal gas law (PV=nRT), we can solve for the volume as shown below:

Therefore, we plug in the data to obtain:

Best regards!