Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The type of atom has the strongest attraction for electrons in bond formation Chlorine (Ci) c<span>onsider the location of barium, chlorine, iodine, and strontium on the periodic table.</span>
Answer is: <span>the pressure of the gas is 9,2 atm.
</span>p₁ = 4,0 atm.
T₁ = 300 K.
V₁ = 5,5 L.
p₂ = ?
T₂ = 250 K.
V₂ = 2,0 L.
Use combined gas law - the volume of amount of gas is proportional to the ratio of its Kelvin temperature and its pressure.<span>
</span>p₁V₁/T₁ = p₂V₂/T₂.
4 atm · 5,5 L ÷ 300 K = p₂ · 2,0 L ÷ 250 K.
0,0733 = 0,008p₂.
p₂ = 9,2 atm.
<h3><u>Answer</u>;</h3>
1.0875 x 10-2 atm
<h3><u>Explanation;</u></h3>
2O3(g) → 3O2(g)
rate = -(1/2)∆[O3]/∆t = +(1/3)∆[O2)/∆t
The average rate of disappearance of ozone ... is found to
be 7.25 × 10–3 atm over a certain interval of time.
This means (ignoring time)
∆[O3]/∆t = -7.25 × 10^–3 atm
(it is disappearing, thus the negative sign)
rate = -(1/2)∆[O3]/∆t
rate = -(1/2)*(-7.25 × 10^–3 atm)
= 3.625 × 10^–3 atm
Now use the other part of the expression:
rate = +(1/3)∆[O2)∆t
3.625 × 10–3 atm = +(1/3)∆[O2)/t
∆[O2)/∆t = (3)*(3.625× 10^–3 atm)
= 1.0875 x 10-2 atm over the same time interval
Answer:
<h2>mass = 200.23 g</h2>
Explanation:
The density of a substance can be found by using the formula
Since we are finding the mass
<h3>mass = Density × volume</h3>
From the question
Density = 0.81 g/mL
volume = 247.2 mL
Substitute the values into the above formula and solve for the mass
mass = 0.81 × 247.2
= 200.232
We have the final answer as
<h3>mass = 200.23 g to 2 decimal places</h3>
Hope this helps you
Answer:
Explanation:
Hello!
In this case, when two substances at different temperature are put in contact and an equilibrium temperature is attained, we can evidence that the heat lost by the hot substance (metal) is gained by the cold substance (water) and we can write:
Which can be also written as:
Thus, since we need the specific heat of the metal, we solve for it as shown below:
Best regards.