According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc =
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc =
=
= 8.5 * 10⁷
Proteins are made from long chains of smaller molecules called amino acids. These long chains are folded into particular shapes. This is important in relation to how antibodies and enzymes work.
Enzymes are biological catalysts. There are optimum temperatures and pH values at which their activity is greatest. Enzymes are also proteins. If the shape of an enzyme changes, it may no longer work (it is said to have been 'denatured'). maybe right?
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base =
Volume = = 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly
Answer:
去無奈此刻投哦他家
Explanation:
pH=3 المحلول حمضي او قاعده