I don’t even know I’m just answering for pints
Answer:
A breakdown of the breaking buffer was first listed with its respective component and their corresponding value; then a table was made for the stock concentrations in which the volume that is being added was determined by using the formula
. It was the addition of these volumes altogether that make up the 0.25 L (i.e 250 mL) with water
Explanation:
Given data includes:
Tris= 10mM
pH = 8.0
NaCl = 150 mM
Imidazole = 300 mM
In order to make 0.25 L solution buffer ; i.e (250 mL); we have the following component.
Stock Concentration Volume to be Final Concentration
added
1 M Tris 2.5 mL 10 mM
5 M NaCl 7.5 mL 150 mM
1 M Imidazole 75 mL 300 mM
. is the formula that is used to determine the corresponding volume that is added for each stock concentration
The stock concentration of Tris ( 1 M ) is as follows:
.

The stock concentration of NaCl (5 M ) is as follows:
.

The stock concentration of Imidazole (1 M ) is as follows:
.

Hence, it is the addition of all the volumes altogether that make up 0.25L (i.e 250 mL) with water.
Answer:
Percentage yield = 85.2%
Explanation:
Given data:
Mass of Mg = 21.3 g
Actual yield of MgO = 30.2 g
Percentage yield = ?
Solution:
Chemical equation:
2Mg + O₂ → 2MgO
Number of moles of Mg = mass/molar mass
Number of moles of Mg = 21.3 g / 24.3 g/mol
Number of moles of Mg = 0.88 mol
Now we will compare the moles of MgO with Mg.
Mg : MgO
2 : 2
0.88 : 0.88
Mass of MgO:
Mass of MgO= moles × molar mass
Mass of MgO= 0.88 mol × 40.3g/mol
Mass of MgO = 35.46 g
Actual yield of MgO = 30.2 g
Percentage yield:
Percentage yield = Actual yield/theoretical yield × 100
Percentage yield = 30.2 g/ 35.46 g × 100
Percentage yield = 85.2%
The volume of the piece of aluminum is 1.96 mL
Explanation:
Density is the relationship of the mass of a substance and its volume.
In this case, the mass of aluminum is 5.30 g and the density is 2.70 g/mL
The formula to apply is;
D=M/V where D is density in g/mL, M is mass in g and V is volume in mL
2.70=5.30/V
V=5.30/2.70 =1.96 mL
Learn More
Density of a substance:brainly.com/question/12605423
Keywords: volume, aluminum,density
#LearnwithBrainly