I think its
<span>The Mechanical energy in a mechanical system is determined by adding the potential and kinetic energy together. </span>
Answer:
[H2]eq = 0.0129 M
[F2]eq = 1.0129 M
[HF]eq = 0.9871 M
Explanation:
∴ Ke = [HF]² / [H2]*[F2] = 1.15 E2
experiment:
∴ n H2 = 3.00 mol
∴ n F2 = 6.00 mol
∴ V sln = 3.00 L
⇒ [H2]i = 3.00 mol / 3.00 L = 1 M
⇒ [F2]i = 6.00 mol / 3.00 L = 2 M
[ ]i change [ ]eq
H2 1 1 - x 1 - x
F2 2 2 - x 2 - x
HF - x x
⇒ K = (x)² / (1 - x)*(2 - x) = 1.15 E2
⇒ x² / (2 - 3x + x²) = 1.15 E2 = 115
⇒ x² = (2 - 3x + x²)(115)
⇒ x² = 230 - 345x + 115x²
⇒ 0 = 230 - 345x + 114x²
⇒ x = 0.9871
equilibrium:
⇒ [H2] = 1 - x = 1 - 0.9871 = 0.0129 M
⇒ [F2] = 2 - x = 2 - 0.9871 = 1.0129 M
⇒ [HF] = x = 0.9871 M
Answer:
4. If cotton plants need a consistent amount of water to grow steadily, then a cotton plant that displays steady growth will receieve 100 mL of water every day.
Explanation:
Hypotheses are written in the format of "If... then...". It should include information on both variables to arrive at a conclusion point.
Given the fact that we are seeing a rise in the temperature of the globe, the artic animals in that ecosystem must adapt by a reduction in the rate of metabolism.
<h3>What is global warming?</h3>
Several evidences continue to emerge that the temperature of the earth have continued to increase and this is largely due to the fact that since the turn of the twentieth century and the rise of industrialization, there have been a rise in the emission of the carbon dioxide and other green house gases into the environment. As a result of this, the temperature of the earth has continued to rise steadily leading to the melting of the ice cover and the destruction of ecosystems that are found around the artic regions of the earth.
Now, we know that an organism is able to adapt to the changes that occur in its habitat by being able to alter some of its structure and function.
Given that the organisms that live in the artic are adapted to cold regions and low temperatures, the metabolic rate of the organisms is high in order to produce heat.
As a result of the rise in global temperatures, the organisms would have to reduce their rate of metabolism.
Learn more about global warming:brainly.com/question/12908180
#SPJ1
Answer:
Heat and mass transfer of a LiBr/water absorption heat pump system (AHP) was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.